【数据结构】串的定义以及算法

简介: 【数据结构】串的定义以及算法


一、定义

串结构的定长顺序存储类似于线性表的顺序存储结构,用一组地址连续的存储单元存储串值的字符序列。

二、结构

在串的定长顺序存储结构中,按照预定义的大小,为每个定义的串变量分配一个固定长度的存储区,

  则可用定长数组如下描述之。
     typedef unsigned char SString[MAXLEN+1];

注意:

用SString[0]来存放串长信息;

串值后面加一个不计入串长度的标识符‘\0’;

串的实际长度可在予定义长度的范围内随意,超过予定义长度的串值则被舍去,称为“截断”

术语:

串的长度:串中字符的个数;零个字符的串称为空串,记为

空格串:由一个或多个空格组成的串,其长度为串中空格字符的个数

子串:串s中任意个连续的字符组成的子序列称为该串的子串,包含子串的串s相应地称为主串。

子串位置:字符在序列中的序号称为该字符在串中的位置。子串在主串中 的位置以第一个字符在主串中的位置来表示。

串相等:两个串相等,当且仅当这两个串的值相等。即,只有当两个串的长度相等,并且各个对应位置的字符都相等时才相等。


串的类型定义


    ADT string {
          数据对象:
          数据关系:
          数据操作:
            StrAssign(&T,chars);   //串赋值,生成一个值等于chars的串T
          StrCompare(S,T);   //串比较,若S>T,返回值>0……
            StrLength(S);   //求串长
            Concat(&T,S1,S2);   //串连接,用T返回S1+S2的新串
            SubString(&Sub,S,p,len);  //求S中p位置起长度为len的子串
            ……
            Index(S,T,p);  //返回子串T在主串S中p字符之后首次出现的位置
            Replace(&S,T,V);  //用子串V代替串S中所有的子串T
    }string


串的基本操作


/—初始化—/


/*---初始化---*/
void InitSString(SString s)
{
    s[0] = '\0';
}


/—串打印—/


/*---串打印---*/
void PrintString(SString s)
{
    printf("\n%s",s+1);
}


/—字符串的赋值—/


/*---字符串的赋值---*/
void StrAssign(SString s,char *str)
{
    int len = strlen(str);
    for(int i = 0;i<len;i++)
    {
        s[i+1] = str[i];
    }
    s[len+1] = '\0';
    s[0] = len;
}


/—求长度—/


/*---求长度---*/
int Strlenth(SString s)
{
    int len = 0;
    while(*s!='\0')
    {
        len++;
        s++;
    }
    return len;
}


/—创建串—/


/*---创建串---*/
bool CreatSString(SString s,char *str)
{
    InitSString(s);         //初始化
    StrAssign(s,str);       //串赋值
}


/—串连接—/


/*---串连接---*/
void Concat(SString t,SString s1,SString s2)
{
    int lens1= (int)s1[0];
    int lens2 = (int)s2[0];
    int i = 1,j = 1;
    while(i<=lens1)
    {
        t[i] = s1[i];
        i++;
    }
    t[0] = lens1;
    i--;                //根据结束条件 i=lens1+1,故t[i]此时没有赋值
    if((lens1+lens2)<MAXLEN)
    {
        while(j<=lens2)
        {
            t[i+j] = s2[j];
            j++;
        }
        t[0] = lens1+lens2;
    }
    else
    {
        while(j<MAXLEN-lens1)
        {
            t[i+j] = s2[j];
            j++;
        }
        t[0] = MAXLEN;
    }
    t[i+j+1] = '\0';
}


/—求子串—/


/*---求子串---*/
bool SubString(SString sub,SString s,int p,int len)
{
    /*get substring  */
    int i;
    if(p<1||p>s[0]||len<0||len>s[0]-p+1)
        /*子串长度为零/当子串长度大于主串/子串长度小于零/子串长度大于主串截取位置到最后的长度,错误*/
    return false;
    else
    {
        for(i=1;i<=len;i++)
           sub[i]=s[i+p-1];  /*复制字符 */
        sub[i]='\0';
        sub[0]=len;          /*修改表长*/
     return true;
    }
}


/—字符串比较—/


/*---字符串比较---*/
int StrCompare(SString s,SString t)
{
    int result = 0;//当比较结构相同时,为零。
    /*从s[1] 和 t[1] 开始比较*/
    s++;
    t++;
    while(*s!='\0' || *t!='\0')
    {
        result = *s - *t;
        if(result!= 0)
            break;/*如果不相等,得出结果并退出*/
        /*相等,下一组比较*/
        s++;
        t++;
    }
    return result;
}


/—删除子串—/


/*---删除子串---*/
//删除字符串:删除字符串S从pos位置开始的len长度子串
void StrDelete(SString s,int pos,int len)
{
    int s_len = Strlenth(s);//获取字符串的长度
    for(int i = pos + len;i<=s_len;i++)
    {
        //将字符串中从pos+len位置开始的字符全部前移len个
        s[i-len] = s[i];
    }
    s[0] = s_len-len;
    s[s_len-len+1] = '\0';
}


/—字符串清除—/


/*---字符串清除---*/
void StrClear(SString s)
{
  s[0] = '\0';
}


/—模式匹配(kmp算法)—/


/*---模式匹配(kmp算法)---*/
int StrIndex_kmp(SString s, char *str)
{
    int i = 1;
    int j = 0;
    int next[MAXLEN];
    int sLen = strlen(s);
    int pLen = strlen(str);
    GetNext(str,next);
    while (i < sLen && j < pLen)
    {
        //①如果j = -1,或者当前字符匹配成功(即S[i] == P[j]),都令i++,j++
        if (j == -1 || s[i] == str[j])
        {
            i++;
            j++;
        }
        else
        {
            //②如果j != -1,且当前字符匹配失败(即S[i] != P[j]),则令 i 不变,j = next[j]
            //next[j]即为j所对应的next值
            j = next[j];
        }
    }
    if (j == pLen)
        return i-pLen;
    else
        return -1;
}
/*---获得next数组---*/
 void GetNext(char *t,int next[])
{
   int j=0,k=-1;
        next[0]=-1;
    int len = strlen(t);
   while(j<len)
   {
      if(k == -1 || t[j] == t[k])
      {
         j++;k++;
         if(t[j]==t[k])//当两个字符相同时,就跳过
            next[j] = next[k];
         else
            next[j] = k;
      }
      else k = next[k];
   }
}


串的其他存储结构


1.顺序动态存储


typedef struct {
    char ch[maxsize];
     int length;
    } String, *string;


2.链式存储


  trpedef struct chunk{
  char ch[maxlen];
  struct chunk *next
  }chunk;
  typedef struct {
  chunk *head,*tail;
  int len;
  }lstring;


当maxlen= 1时,每个节点存放一个字符,便于进行插入和删除操作,但存储空间利用率太低;当maxlen>1时,每个节点存放多个字符,当最后一个字符未满是,不足处用特定字符(如“#”)补齐。此时提高了存储密度,但插入、删除的处理方法比较复杂,需要考虑节点的分拆和合并。


相关文章
|
2月前
|
算法 数据处理 C语言
C语言中的位运算技巧,涵盖基本概念、应用场景、实用技巧及示例代码,并讨论了位运算的性能优势及其与其他数据结构和算法的结合
本文深入解析了C语言中的位运算技巧,涵盖基本概念、应用场景、实用技巧及示例代码,并讨论了位运算的性能优势及其与其他数据结构和算法的结合,旨在帮助读者掌握这一高效的数据处理方法。
61 1
|
2月前
|
机器学习/深度学习 算法 数据挖掘
K-means聚类算法是机器学习中常用的一种聚类方法,通过将数据集划分为K个簇来简化数据结构
K-means聚类算法是机器学习中常用的一种聚类方法,通过将数据集划分为K个簇来简化数据结构。本文介绍了K-means算法的基本原理,包括初始化、数据点分配与簇中心更新等步骤,以及如何在Python中实现该算法,最后讨论了其优缺点及应用场景。
147 4
|
2天前
|
存储 算法 测试技术
【C++数据结构——树】二叉树的遍历算法(头歌教学实验平台习题) 【合集】
本任务旨在实现二叉树的遍历,包括先序、中序、后序和层次遍历。首先介绍了二叉树的基本概念与结构定义,并通过C++代码示例展示了如何定义二叉树节点及构建二叉树。接着详细讲解了四种遍历方法的递归实现逻辑,以及层次遍历中队列的应用。最后提供了测试用例和预期输出,确保代码正确性。通过这些内容,帮助读者理解并掌握二叉树遍历的核心思想与实现技巧。
16 2
|
18天前
|
存储 运维 监控
探索局域网电脑监控软件:Python算法与数据结构的巧妙结合
在数字化时代,局域网电脑监控软件成为企业管理和IT运维的重要工具,确保数据安全和网络稳定。本文探讨其背后的关键技术——Python中的算法与数据结构,如字典用于高效存储设备信息,以及数据收集、异常检测和聚合算法提升监控效率。通过Python代码示例,展示了如何实现基本监控功能,帮助读者理解其工作原理并激发技术兴趣。
53 20
|
2月前
|
存储 算法 搜索推荐
Python 中数据结构和算法的关系
数据结构是算法的载体,算法是对数据结构的操作和运用。它们共同构成了计算机程序的核心,对于提高程序的质量和性能具有至关重要的作用
|
2月前
|
数据采集 存储 算法
Python 中的数据结构和算法优化策略
Python中的数据结构和算法如何进行优化?
|
2月前
|
算法
数据结构之路由表查找算法(深度优先搜索和宽度优先搜索)
在网络通信中,路由表用于指导数据包的传输路径。本文介绍了两种常用的路由表查找算法——深度优先算法(DFS)和宽度优先算法(BFS)。DFS使用栈实现,适合路径问题;BFS使用队列,保证找到最短路径。两者均能有效查找路由信息,但适用场景不同,需根据具体需求选择。文中还提供了这两种算法的核心代码及测试结果,验证了算法的有效性。
123 23
|
2月前
|
算法
数据结构之蜜蜂算法
蜜蜂算法是一种受蜜蜂觅食行为启发的优化算法,通过模拟蜜蜂的群体智能来解决优化问题。本文介绍了蜜蜂算法的基本原理、数据结构设计、核心代码实现及算法优缺点。算法通过迭代更新蜜蜂位置,逐步优化适应度,最终找到问题的最优解。代码实现了单链表结构,用于管理蜜蜂节点,并通过适应度计算、节点移动等操作实现算法的核心功能。蜜蜂算法具有全局寻优能力强、参数设置简单等优点,但也存在对初始化参数敏感、计算复杂度高等缺点。
66 20
|
2月前
|
并行计算 算法 测试技术
C语言因高效灵活被广泛应用于软件开发。本文探讨了优化C语言程序性能的策略,涵盖算法优化、代码结构优化、内存管理优化、编译器优化、数据结构优化、并行计算优化及性能测试与分析七个方面
C语言因高效灵活被广泛应用于软件开发。本文探讨了优化C语言程序性能的策略,涵盖算法优化、代码结构优化、内存管理优化、编译器优化、数据结构优化、并行计算优化及性能测试与分析七个方面,旨在通过综合策略提升程序性能,满足实际需求。
71 1
|
2月前
|
机器学习/深度学习 算法 C++
数据结构之鲸鱼算法
鲸鱼算法(Whale Optimization Algorithm,WOA)是由伊朗研究员Seyedali Mirjalili于2016年提出的一种基于群体智能的全局优化算法,灵感源自鲸鱼捕食时的群体协作行为。该算法通过模拟鲸鱼的围捕猎物和喷出气泡网的行为,结合全局搜索和局部搜索策略,有效解决了复杂问题的优化需求。其应用广泛,涵盖函数优化、机器学习、图像处理等领域。鲸鱼算法以其简单直观的特点,成为初学者友好型的优化工具,但同时也存在参数敏感、可能陷入局部最优等问题。提供的C++代码示例展示了算法的基本实现和运行过程。
65 0