惊呆了,我的 Python 代码里面出现了薛定谔的 Bug

简介: 惊呆了,我的 Python 代码里面出现了薛定谔的 Bug

摄影:产品经理跟产品经理从花鸟市场淘回来的小花花

GNE: 新闻网页正文通用抽取器[1]更新了0.2.1版本,大幅度提高了正文的提取速度。在开发这个版本的时候,我遇到了一个非常奇怪的 Bug,最终发现是由于垃圾回收机制和内存重用机制导致的。今天我们来看看这个问题。

问题背景

先来看一段代码:

图1

这段代码读取tests/163/9.html这个文件里面的 HTML 代码,分别获取 <body> 下面的所有标签内部的所有<a>标签中的文本。说起来可能有点绕口,我举个例子。


<body>    <div>        <a href="/xx">你好</a>    </div>    <h2>        <a>世界</a>    </h2></body>

分别获取<div>标签和<h2>标签下面的<a>标签中的文本,也就是你好世界

但这段代码有个问题,就是对于嵌套结构的标签,会重复提取。例如:


<body>    <div>        <h2>            <a href="/xx">你好</a>        </h2>    </div></body>

首先,获取<div>标签下面的<a>标签,获取到的是你好所在的<a>标签。但是,获取<h2>标签下面的<a>标签时,获取的仍然是同一个<a>标签。

这样一来,在上图代码里面第15-20行就会重复执行两次。

为了提高代码的运行效率,我们引入缓存,记录每一个<a>标签的分析结果,如果发现一个<a>标签已经被分析了,就直接使用缓存的结果,避免重复分析。

于是,代码修改成下面这样:

图2

代码第18行的str(element)对应了这个节点的内存地址,如下图所示:

图3

这段代码看起来似乎没有什么问题,但在实际提取数据的时候,发现提取的结果不太正常。

薛定谔的 Element

为了调试这个问题,我对代码做了一下修改:

图4

可以看到,同一个 HTML 标签,之前缓存的结果竟然跟新提取的不一样。

于是,我想看看每次提取的时候,对应的 element 是哪个,但却发生了更诡异的事情,我们做一个看起来对代码不会有任何影响的改动:

图5

图4里面,我们直接把element_text_list缓存起来。图5里面,我们把[element_text_list, element]缓存起来,读取的时候,读取这个列表的下标为0的元素。也就是说,这个缓存的element我们根本不使用。

但奇怪的事情就这样发生了,问题消失了!在图4大量打印的同一个标签,缓存的数据跟提取的数据不一致!,在图5里面却一条都没有打印。这样修改以后,GNE 的提取的结果就正确了。

但为什么会发生这种事情呢?难道说跟缓存的结果有关系?那么我们把列表里面的 element改成其他数据看看:

图6

仅仅是把element改成了数字1,Bug 又出现了。

它似乎知道我在试图去观察它,当我尝试用代码去观察 element时,它就一切正常。当我不观察它时,它就会出问题。薛定谔的 element

看不见的手

遇事不决,量子力学。这个问题跟量子力学实际上没有关系。导致这个诡异情况发生的原因,是一个一直运行在 Python 里面,但是你常常忽略的机制——垃圾回收。

Python 会把不再使用的对象清理掉,从而释放内存。当我们执行一个 for 循环时:


for element in element_list:    a = element.xpath('//xxx')    b = element.xpath('.//text()')    c = 1 + 1

循环第一次执行的时候,生成第一个element对象,但是这个对象在循环第二次执行的时候就被新的element对象覆盖了。因为没有其他地方继续使用第一个 element 对象,它的引用计数归零,Python 的垃圾回收机制就会把它清理掉。它占用的内存空间也会被释放出来。

但如果换一种写法:


cache = []for element in element_list:    a = element.xpath('//xxx')    b = element.xpath('.//text()')    c = 1 + 1    cache.append(element)

由于列表cache中包含了对每个 element 对象的引用,导致第一次循环生成的element对象的引用计数不为0,垃圾回收机制不会回收它,它始终占用了一块内存区域。这块区域不会被其他数据使用。那么每次循环,新的element对象都会新申请一块内存区域来存放数据,于是就等价于每一个不同的 element 节点对应了不同的内存地址。

在示例代码里面,大家注意element_flag = str(element)这一行,它的值类似于<Element a at 0x1087ba638>,这里的十六进制数字0x1087ba638对应了这个对象在内存里面的地址。

一开始,我有一个不正确的假设,我以为str(element)的值,对应的 HTML 里面的每个节点。同一个节点,多次执行,结果都一样,不同的节点,多次执行,结果都不一样。

但实际上这是不正确的。因为如果前一个节点的内存区域被垃圾回收了,那么这个区域会被重新分配,新来的节点可能碰巧会放到这个地方,这就导致两个不同的 <a> 标签,当你执行str(element)时,他们打印出来的结果都是相同的。但是实际上他们的正文不一样。

而当我使用element_text_cache[element_flag] = [element_text_list, element]时,由于每个element对象不会被回收,于是就不会出现不同的节点互相覆盖的问题,所以它的工作就符合了预期。

解决问题

所以,bug 的根本原因在于,我不应该使用str(element)作为缓存的 Key,应该找一个跟 HTML 节点一一对应的东西来作为 Key。显然,使用 XPath 更好。

于是,修改代码,把element_flag改成 XPath:

图7

问题得以解决。

目录
相关文章
|
5天前
|
缓存 监控 测试技术
Python中的装饰器:功能扩展与代码复用的利器###
本文深入探讨了Python中装饰器的概念、实现机制及其在实际开发中的应用价值。通过生动的实例和详尽的解释,文章展示了装饰器如何增强函数功能、提升代码可读性和维护性,并鼓励读者在项目中灵活运用这一强大的语言特性。 ###
|
8天前
|
缓存 开发者 Python
探索Python中的装饰器:简化代码,增强功能
【10月更文挑战第35天】装饰器在Python中是一种强大的工具,它允许开发者在不修改原有函数代码的情况下增加额外的功能。本文旨在通过简明的语言和实际的编码示例,带领读者理解装饰器的概念、用法及其在实际编程场景中的应用,从而提升代码的可读性和复用性。
|
4天前
|
Python
探索Python中的装饰器:简化代码,提升效率
【10月更文挑战第39天】在编程的世界中,我们总是在寻找使代码更简洁、更高效的方法。Python的装饰器提供了一种强大的工具,能够让我们做到这一点。本文将深入探讨装饰器的基本概念,展示如何通过它们来增强函数的功能,同时保持代码的整洁性。我们将从基础开始,逐步深入到装饰器的高级用法,让你了解如何利用这一特性来优化你的Python代码。准备好让你的代码变得更加优雅和强大了吗?让我们开始吧!
12 1
|
9天前
|
设计模式 缓存 监控
Python中的装饰器:代码的魔法增强剂
在Python编程中,装饰器是一种强大而灵活的工具,它允许程序员在不修改函数或方法源代码的情况下增加额外的功能。本文将探讨装饰器的定义、工作原理以及如何通过自定义和标准库中的装饰器来优化代码结构和提高开发效率。通过实例演示,我们将深入了解装饰器的应用,包括日志记录、性能测量、事务处理等常见场景。此外,我们还将讨论装饰器的高级用法,如带参数的装饰器和类装饰器,为读者提供全面的装饰器使用指南。
|
5天前
|
存储 缓存 监控
掌握Python装饰器:提升代码复用性与可读性的利器
在本文中,我们将深入探讨Python装饰器的概念、工作原理以及如何有效地应用它们来增强代码的可读性和复用性。不同于传统的函数调用,装饰器提供了一种优雅的方式来修改或扩展函数的行为,而无需直接修改原始函数代码。通过实际示例和应用场景分析,本文旨在帮助读者理解装饰器的实用性,并鼓励在日常编程实践中灵活运用这一强大特性。
|
9天前
|
存储 算法 搜索推荐
Python高手必备!揭秘图(Graph)的N种风骚表示法,让你的代码瞬间高大上
在Python中,图作为重要的数据结构,广泛应用于社交网络分析、路径查找等领域。本文介绍四种图的表示方法:邻接矩阵、邻接表、边列表和邻接集。每种方法都有其特点和适用场景,掌握它们能提升代码效率和可读性,让你在项目中脱颖而出。
22 5
|
7天前
|
机器学习/深度学习 数据采集 人工智能
探索机器学习:从理论到Python代码实践
【10月更文挑战第36天】本文将深入浅出地介绍机器学习的基本概念、主要算法及其在Python中的实现。我们将通过实际案例,展示如何使用scikit-learn库进行数据预处理、模型选择和参数调优。无论你是初学者还是有一定基础的开发者,都能从中获得启发和实践指导。
17 2
|
9天前
|
数据库 Python
异步编程不再难!Python asyncio库实战,让你的代码流畅如丝!
在编程中,随着应用复杂度的提升,对并发和异步处理的需求日益增长。Python的asyncio库通过async和await关键字,简化了异步编程,使其变得流畅高效。本文将通过实战示例,介绍异步编程的基本概念、如何使用asyncio编写异步代码以及处理多个异步任务的方法,帮助你掌握异步编程技巧,提高代码性能。
26 4
|
11天前
|
缓存 开发者 Python
探索Python中的装饰器:简化和增强你的代码
【10月更文挑战第32天】 在编程的世界中,简洁和效率是永恒的追求。Python提供了一种强大工具——装饰器,它允许我们以声明式的方式修改函数的行为。本文将深入探讨装饰器的概念、用法及其在实际应用中的优势。通过实际代码示例,我们不仅理解装饰器的工作方式,还能学会如何自定义装饰器来满足特定需求。无论你是初学者还是有经验的开发者,这篇文章都将为你揭示装饰器的神秘面纱,并展示如何利用它们简化和增强你的代码库。
|
9天前
|
API 数据处理 Python
探秘Python并发新世界:asyncio库,让你的代码并发更优雅!
在Python编程中,随着网络应用和数据处理需求的增长,并发编程变得愈发重要。asyncio库作为Python 3.4及以上版本的标准库,以其简洁的API和强大的异步编程能力,成为提升性能和优化资源利用的关键工具。本文介绍了asyncio的基本概念、异步函数的定义与使用、并发控制和资源管理等核心功能,通过具体示例展示了如何高效地编写并发代码。
20 2