AI 生成视频版,英伟达做到最高1280×2048、最长4.7秒

简介: AI 生成视频版,英伟达做到最高1280×2048、最长4.7秒

前言


机器之心报道编辑:杜伟

在生成式 AI 盛行的今天,英伟达在文本生成视频领域更进了一步,实现了更高分辨率、更长时间。



正文


要说现阶段谁是 AI 领域的「当红辣子鸡」?生成式 AI 舍我其谁。包括 ChatGPT 等对话式 AI 聊天应用、Stable Diffusion 等 AI 绘画神器在内,生成式 AI 展示的效果深深地抓住了人们的眼球。


我们以图像生成模型为例,得益于底层建模技术最近的突破,它们收获了前所未有的关注。如今,最强大的模型构建在生成对抗网络、自回归 transformer 和扩散模型(diffusion model, DM)之上。其中扩散模型的优势在于能够提供稳健和可扩展的训练目标,并且参数密集度通常低于基于 transformer 的竞品模型


虽然图像领域取得了长足进步,但视频建模却落后了,这主要归咎于视频数据训练的高昂计算成本以及缺乏大规模公开可用的通用数据集。目前视频合成虽有丰富的研究文献,但包括先前视频 DM 在内的大多数工作仅能生成分辨率较低且往往较短的视频。


因此,如何生成分辨率更高、更长的视频成为一个热门研究课题。近日慕尼黑大学、英伟达等机构的研究者利用潜在扩散模型(latent diffusion model, LDM)实现了高分辨率的长视频合成。相关论文已经发表在 arXiv 上。


1.png



在论文中,研究者将视频模型应用于真实世界问题并生成了高分辨率的长视频。他们关注两个相关的视频生成问题,一是高分辨率真实世界驾驶数据的视频合成,其在自动驾驶环境中作为模拟引擎具有巨大潜力;二是文本指导视频生成,用于创意内容生成。


为此,研究者提出了视频潜在扩散模型(Video LDM),并将 LDM 扩展到了计算密集型任务 —— 高分辨率视频生成。与以往视频生成 DM 工作相比,他们仅在图像上预训练 Video LDM(或者使用可用的预训练图像 LDM),从而允许利用大规模图像数据集。


接着将时间维度引入潜在空间 DM、并在编码图像序列(即视频)上仅训练这些时间层的同时固定预训练空间层,从而将 LDM 图像生成器转换为视频生成器(下图左)。最后以类似方式微调 LDM 的解码器以实现像素空间中的时间一致性(下图右)。


2.png


此外,为了进一步提高空间分辨率,研究者对像素空间和潜在 DM 上采样器进行时间对齐,将它们转换为时间一致的视频超分辨率模型。在 LDM 的基础上,本文方法以计算和内存高效的方式生成了全局连贯的长视频。对于非常高分辨率的合成,视频上采样器只需要在本地运行,保持了较低的训练和计算要求。


最后,研究者进行了消融实验,在分辨率为 512×1024 的真实驾驶场景视频上对其方法进行了测试,实现了 SOTA 视频质量,并合成了几分钟的视频。此外,他们还微调了 Stable Diffusion,将它变成一个高效、强大的文本到视频生成器,分辨率最高可达 1280 × 2048


通过将经过训练的时间层迁移至不同的微调文本到图像 LDM,研究者首次展示了个性化的文本到视频生成,并希望自己的工作为高效的数字内容创建和自动驾驶模拟开辟新的途径。


我们来看几个文本到视频生成示例,比如「弹电吉他的泰迪熊、高分辨率、4K」。


4.png


比如「海浪拍打着一座孤独的灯塔、不详的灯光」。


5.png


再比如「夕阳下独自穿行在迷雾森林中的旅行者」。


6.png


方法解读:潜在视频扩散模型


这部分中,研究者描述了为实现高分辨率视频合成,对预训练图像 LDM 和 DM 上采样器进行视频微调。


将潜在图像转换为视频生成器


研究者高效训练视频生成模型的关键思路在于:重用预训练的固定图像生成模型,并利用了由参数 θ 参数化的 LDM。具体而言,他们实现了两个不同的时间混合层,即时间注意力和基于 3D 卷积的残差块。研究者使用正弦嵌入为模型提供了时间位置编码。具体流程如下图 4 所示。


3.png


用于长视频生成的预测模型


研究者还训练模型作为给定多个(首个)S 上下文帧的预测模型,通过引入时间二元掩膜 m_S 来实现。该掩膜 mask 了模型必须预测的 T − S 帧。此外研究者将该掩膜和 masked 编码视频帧馈入到模型中进行调节。


在推理过程中,为了生成长视频,研究者迭代地应用了采样过程,将最新的预测重新用作新的上下文。第一个初始序列通过从基础图像模型中合成单个上下文帧来生成,并基于此生成了一个新序列。然后以两个上下文帧为条件对动作进行编码。


用于高帧率的时间插值


高分辨率的特点不仅在于高空间分辨率,还在于高时间分辨率,即高帧率。为此研究者将高分辨率视频的合成过程分为了两部分,第一部分包括上文中的将潜在图像转换为视频生成器和用于长视频的预测模型,它们可以生成具有较大语义变化的关键帧,但受限于内存只能在较低帧率运行。第二部分则引入了一个额外模型,其任务是在给定关键帧之间进行插值


研究者在实现过程中使用了掩膜调节机制。不过与预测任务不同,他们需要 mask 进行插值的帧,否则该机制保持不变,即图像模型被细化为视频插值模型。


超分辨率(SR)模型的时间微调


尽管 LDM 机制提供了很好的原始分辨率,但研究者的目标是将它推进到百万像素级别。他们从级联 DM 中获得灵感,并使用 DM 将 Video LDM 输出放大 4 倍。对于驾驶视频合成实验,研究者使用了像素空间 DM,并将分辨率扩大至 512×1024;对于文本到视频模型,他们使用了 LDM 上采样器,将分辨率扩大至 1280 × 2048。


实验结果


研究者专注于驾驶场景视频生成和文本到视频,因此使用了两个相关数据集,一个是真实驾驶场景(RDS)视频的内部数据集;另一个是 WebVid-10M 数据集,它将公开可用的 Stable Diffusion 图像 LDM 转换为了 Video LDM。


高分辨率驾驶视频合成


研究者在 RDS 数据集上训练 Video LDM pipeline,包括一个 4 倍像素空间视频上采样器。下表 1 显示了无上采样器时,128×256 分辨率下 Video LDM 的主要结果。研究者展示了有和无拥挤和白天 / 夜晚条件下其模型的性能。可以看到,Video LDM 通常优于 LVG,并且在一定条件下进一步降低了 FVD。


7.png


下表 2 显示了人类评估结果。就真实性而言,研究者的样本通常优于 LVG,并且来自条件模型的样本也优于无条件样本。


16.png


研究者将其视频微调像素空间上采样器与独立逐帧图像上采样做了比较,并使用了 128 × 256 30 fps 的真值视频进行调节,如下表 3 所示。


15.png


在下图左 1(底部)和图右 7(顶部)中,研究者展示了来自组合 Video LDM 和视频上采样器模型的条件样本。他们生成了高质量的视频。此外,研究者使用其预测方法生成了时间连贯的多分钟高分辨率驾驶长视频。


13.jpg


用 Stable Diffusion 做文本到视频生成


研究者没有先训练自己的 Image LDM 主干,其 Video LDM 方法可以利用并将现有的 Image LDM 转换为视频生成器。在本文中,他们将 Stable Diffusion 转换为了文本到视频生成器


具体地,研究者使用 WebVid-10M 文本字幕视频数据集,训练了一个时间对齐版本的 Stable Diffusion 来做文本条件视频生成。他们在来自 WebVid 的帧上对 Stable Diffusion 的空间层进行简单微调,然后插入时间对齐层并训练它们(分辨率为 320 × 512)。研究者还在这些对齐层中添加了文本条件。


此外,研究者进一步对公开可用的潜在 Stable Diffusion 上采样器进行视频微调,使它支持 4 倍放大并生成分辨率为 1280 × 2048 的视频。研究者生成了由 113 帧组成的视频,并可以渲染成 4.7 秒的 24 fps 或 3.8 秒 30 fps 的片段。相关样本如上图 1 和下图 6 所示。

12.png

相关文章
|
9天前
|
机器学习/深度学习 人工智能 编解码
全面升级的“新清影”,给AI生成视频带来了哪些新玩法?
智谱清言App近日上线了“新清影”,并开源了最新的图生视频模型CogVideoX v1.5。相比之前的版本,“新清影”在视频分辨率、生成速度、多通道生成能力和模型性能等方面均有显著提升,支持生成10秒、4K、60帧的超高清视频。此外,即将上线的音效功能将进一步提升视频的逼真度和实用性,标志着AI视频创作进入“有声时代”。这些改进使得内容创作变得更加高效和便捷,为创作者提供了更多可能性。
|
1月前
|
人工智能 编解码 API
【选择”丹摩“深入探索智谱AI的CogVideoX:视频生成的新前沿】
【选择”丹摩“深入探索智谱AI的CogVideoX:视频生成的新前沿】
|
2月前
|
人工智能
防AI换脸视频诈骗,中电金信联合复旦提出多模态鉴伪法,还入选顶会ACM MM
【9月更文挑战第26天】中电金信与复旦大学合作,提出一种基于身份信息增强的多媒体伪造检测方法,并入选ACM MM国际会议。该方法利用身份信息作为检测线索,构建了含54位名人324个视频的多模态伪造数据集IDForge,设计了参考辅助的多模态伪造检测网络R-MFDN,显著提升了检测性能,准确率达到92.90%。尽管如此,该方法仍存在一定局限性,如对非英语国家数据及无明确身份信息的视频检测效果可能受限。
52 4
|
2月前
|
人工智能 数据中心 芯片
【通义】AI视界|英特尔推出新一代AI芯片挑战英伟达
今日科技热点包括:OpenAI CTO 米亚·穆拉蒂宣布离职,Meta发布多功能Llama 3.2语言模型,扎克伯格因Meta的人工智能策略使个人资产突破2000亿美元,星纪魅族展示AI生态新品如Lucky 08 AI手机及智能穿戴设备,以及英特尔发布Xeon 6 CPU和Gaudi 3 AI加速器挑战英伟达市场地位。这些动态展现了人工智能领域快速发展的趋势及其对科技巨头的影响。
|
1月前
|
人工智能 自然语言处理 搜索推荐
Sora - 探索AI视频模型的无限可能
这篇文章详细介绍了Sora AI视频模型的技术特点、应用场景、未来展望以及伦理和用户体验等方面的问题。
26 0
|
3月前
|
机器学习/深度学习 人工智能 编解码
|
3月前
|
人工智能 搜索推荐
影视与游戏行业AI视频制作的第3步:为角色生成说话视频
继 影视与游戏行业AI视频制作实战:第一步,角色形象设计的一致性以及影视与游戏行业AI视频制作实战:第二步,为角色生成个性化语音 后,实现角色生动化的下一步动作就是能让图像动起来。
|
3月前
|
人工智能 自然语言处理 语音技术
使用AI识别语音和B站视频并通过GPT生成思维导图原创
AI脑图现新增语音及B站视频内容识别功能,可自动生成思维导图。用户可通过发送语音或上传语音文件,系统自动转换为文本并生成结构化的思维导图;对于B站视频,仅需提供链接即可。其工作流程包括:语音转文本、文本结构化、生成Markdown、Markdown转思维导图HTML以及输出最终的思维导图图片给用户。
76 0
|
4月前
|
机器学习/深度学习 人工智能 自然语言处理
AIGC-基于EAS服务快速部署一个AI视频生成
AIGC-基于EAS服务快速部署一个AI视频生成
|
3月前
|
机器学习/深度学习 人工智能 算法