深度学习相关概念:计算图与反向传播

简介: 在深度学习分类问题中,反向传播是一个重要的环节,它决定着模型是否能被训练,反向传播相当于一个负反馈,当一件事做完之后,会寻找当前事件做的不好的问题,进行回传,当下次在做的时候,进行优化。

 在深度学习分类问题中,反向传播是一个重要的环节,它决定着模型是否能被训练,反向传播相当于一个负反馈,当一件事做完之后,会寻找当前事件做的不好的问题,进行回传,当下次在做的时候,进行优化。


c9c7a83f634e4e71ad0a77f2c4fb1611.png


计算图


 在了解反向传播之前,我们必须首先明白什么是计算图,当只有构成计算图时,数据才能通过反向传播进行更新。


 计算图是一种有向图,它用来表达输入、输出以及中间变量之间的计算关系,图中的每个节点对应着一种数学运算。


 例如函数f=(x+y)²的计算图如下所示


e435e309b32a40098c2d5c0885aff920.png


 这里假设x=1,y=2,则z=x+y=3,f=z²等于9,计算


image.png


 又因为z对于x的导数


image.png


 z对于y的导数


image.png


 根据链式法则即可求出


image.png


0e77d4f69da44a65af5a11db8b0f19f6.png


计算图总结


  • 任意复杂的函数,都可以用计算图的形式表示


  • 在整个计算图中,每个门单元都会得到一些输入,然后,进行下面两个计算:

a) 这个门的输出值

 b) 其输出值关于输入值的局部梯度。


  • 利用链式法则,门单元应该将回传的梯度乘以它对其的输入的局部梯度,从而得到整个网络的输出对该门单元的每个输入值的梯度(核心)。


反向传播


 根据上面总结,我们可以把反向传播应用到下面中,以函数f(w,x)为例


612387266adf4f28a070e091b4509e6f.png


回传的梯度乘以它对其的输入的局部梯度,从而得到整个网络的输出对该门单元的每个输入值的梯度


5f4fa8418c1b443887df62191c7cfabe.png


 以此类推可计算上一个门单元的输入梯度


03c54eb3c2c24c1cae2097d244d0dab9.png


cbdfaeea222343fbacf762ba642b2cfe.png

289c808d5b204b3c9e6f7b3b4d5e02e6.png

91cec0057ab54844896fe0fe4fa84976.png

1e994700ec3341b78c7f27aac1f37c1b.png


f4a9df75622e40588802c42f7d9fe7c0.png


颗粒度


 在上述的反向传播中,每一次数据运算都要进行一次传播,显得有些冗余。我的前项计算结果在计算梯度的时候都是要用到的。如何避免这个现象了?这里讲了一个颗粒度问题,如果我把这个方框中的所有运算做写成一个函数,就写成一个这个Sigmoid的函数的话,写成一个函数,我直接把这个导数写出来的话,这个导数我可以直接相当于输入和输出就可以直接求出,那么我就可以直接求出这个0.1。


8f53dcc99dee43769eb1f3125597a102.png


 这样求的好处是什么?在我的这个计算过程中,这点就不用分解成多处的分解成多次的这种局部门的计算,我可以直接用这一个公式就可以算到这个到这个点的梯度了,这样的好处就是计算效果快,所以在很多这个学习框架里面可以用的就是这样的,他的梯度可以推断是比较快的,你甚至把这整个写成一个函数,你一次就可以求出来w0、x0、w1、x1、w2所有的梯度。组合这种大函数,优势时速度快,计算少,但是缺点是你就得自己去写导函数。但是大部分情况是另一种情况,他把所有的算法都拆解成计算图,那么拆解的计算图了以后,那这样的话你不用自己求导函数,因为这种标准的分解流程它可以子在神经网络中写成标准的程序,它能帮你标准的完成这件事情。这就是计算图的颗粒度问题,计算块颗粒度小,计算慢;但颗粒度越大,你就要自己写求导函数,这就是计算图的颗粒度,它跟效率有关系。

目录
相关文章
|
2月前
|
机器学习/深度学习 人工智能 算法
深度学习入门:理解神经网络与反向传播算法
【9月更文挑战第20天】本文将深入浅出地介绍深度学习中的基石—神经网络,以及背后的魔法—反向传播算法。我们将通过直观的例子和简单的数学公式,带你领略这一技术的魅力。无论你是编程新手,还是有一定基础的开发者,这篇文章都将为你打开深度学习的大门,让你对神经网络的工作原理有一个清晰的认识。
|
14天前
|
机器学习/深度学习 算法 编译器
Python程序到计算图一键转化,详解清华开源深度学习编译器MagPy
【10月更文挑战第26天】MagPy是一款由清华大学研发的开源深度学习编译器,可将Python程序一键转化为计算图,简化模型构建和优化过程。它支持多种深度学习框架,具备自动化、灵活性、优化性能好和易于扩展等特点,适用于模型构建、迁移、部署及教学研究。尽管MagPy具有诸多优势,但在算子支持、优化策略等方面仍面临挑战。
37 3
|
1月前
|
机器学习/深度学习 数据采集 自然语言处理
通过深度学习实践来理解深度学习的核心概念
通过实践,不仅可以加深对深度学习概念的理解,还能发现理论与实际之间的差距,进而对模型进行改进和优化。实践中遇到的问题(如梯度消失、过拟合、训练效率低等)能促使你深入思考,进而更加全面地掌握深度学习的核心概念。
44 4
|
2月前
|
机器学习/深度学习 分布式计算 数据可视化
对深度学习概念的基础理解与认识
一、神经网络的组成 人工神经网络(Artificial Neural Networks,简写为ANNs)是一种模仿动物神经网络行为特征,进行分布式并行信息处理的算法数学模型。 这种网络依靠系统的复杂程度,通过调整内部大量节点之间相互连接的关系,从而达到处理信息的目的,并具有自学习和自适应的能力。神经网络类型众多,其中最为重要的是多层感知机。为了详细地描述神经网络,我们先从最简单的神经网络说起。 感知机 感知机是1957年,由Rosenblatt提出会,是神经网络和支持向量机的基础。 感知机是有生物学上的一个启发,他的参照对象和理论依据可以参照下图:(我们的大脑可以认为是一个神经网络,
对深度学习概念的基础理解与认识
|
28天前
|
机器学习/深度学习 分布式计算 安全
深度学习之安全多方计算
基于深度学习的安全多方计算(Secure Multi-Party Computation,简称MPC)是一种密码学技术,旨在让多个参与方在不暴露各自数据的前提下,协作完成一个计算任务。
42 0
|
3月前
|
机器学习/深度学习 并行计算 异构计算
面向高效能计算的深度学习框架优化策略
【8月更文第9天】随着深度学习在各个领域的广泛应用,对训练模型的速度和效率要求越来越高。为了满足这些需求,深度学习框架需要针对不同硬件平台进行优化。本文将探讨针对GPU、TPU等硬件平台的优化策略,重点关注数据传输效率、并行计算策略及内存管理等方面。
141 1
|
4月前
|
机器学习/深度学习 算法 Serverless
现代深度学习框架构建问题之链式法则在反向传播中的作用如何解决
现代深度学习框架构建问题之链式法则在反向传播中的作用如何解决
54 3
|
4月前
|
机器学习/深度学习 人工智能 并行计算
现代深度学习框架构建问题之线性代数的常见概念定义如何解决
现代深度学习框架构建问题之线性代数的常见概念定义如何解决
46 3
|
4月前
|
机器学习/深度学习 自然语言处理 算法
深度学习的关键概念和网络结构
度学习是人工智能和机器学习的一个重要分支,它通过模拟人脑神经元的工作方式来处理复杂的模式识别和数据分析任务。深度学习已经在许多领域取得了显著的成果,如图像识别、语音识别和自然语言处理。
63 1
|
4月前
|
机器学习/深度学习 PyTorch 算法框架/工具
图神经网络是一类用于处理图结构数据的神经网络。与传统的深度学习模型(如卷积神经网络CNN和循环神经网络RNN)不同,
图神经网络是一类用于处理图结构数据的神经网络。与传统的深度学习模型(如卷积神经网络CNN和循环神经网络RNN)不同,

热门文章

最新文章