实现高并发秒杀的七种方式(2)

简介: 实现高并发秒杀的七种方式(2)

3.3 方式三(悲观锁一)

除了上面在业务代码层面加锁外,还可以使用数据库自带的锁进行并发控制。

悲观锁,什么是悲观锁呢?通俗的说,在做任何事情之前,都要进行加锁确认。这种数据库级加锁操作效率较低。

使用for update一定要加上事务,当事务处理完后,for update才会将行级锁解除

如果请求数和秒杀商品数量一致,会出现少卖

@ApiOperation(value="秒杀实现方式三——悲观锁")
@PostMapping("/start/pes/lock/one")
public Result startPesLockOne(long skgId){
    try {
        log.info("开始秒杀方式三...");
        final long userId = (int) (new Random().nextDouble() * (99999 - 10000 + 1)) + 10000;
        Result result = secondKillService.startSecondKillByUpdate(skgId, userId);
        if(result != null){
            log.info("用户:{}--{}", userId, result.get("msg"));
        }else{
            log.info("用户:{}--{}", userId, "哎呦喂,人也太多了,请稍后!");
        }
    } catch (Exception e) {
        e.printStackTrace();
    }
    return Result.ok();
}

业务逻辑

@Override
@Transactional(rollbackFor = Exception.class)
public Result startSecondKillByUpdate(long skgId, long userId) {
    try {
        // 校验库存-悲观锁
        SecondKill secondKill = secondKillMapper.querySecondKillForUpdate(skgId);
        Integer number = secondKill.getNumber();
        if (number > 0) {
            //扣库存
            secondKill.setNumber(number - 1);
            secondKillMapper.updateById(secondKill);
            //创建订单
            SuccessKilled killed = new SuccessKilled();
            killed.setSeckillId(skgId);
            killed.setUserId(userId);
            killed.setState((short) 0);
            killed.setCreateTime(new Timestamp(System.currentTimeMillis()));
            successKilledMapper.insert(killed);
            //支付
            Payment payment = new Payment();
            payment.setSeckillId(skgId);
            payment.setSeckillId(skgId);
            payment.setUserId(userId);
            payment.setMoney(40);
            payment.setState((short) 1);
            payment.setCreateTime(new Timestamp(System.currentTimeMillis()));
            paymentMapper.insert(payment);
        } else {
            return Result.error(SecondKillStateEnum.END);
        }
    } catch (Exception e) {
        throw new ScorpiosException("异常了个乖乖");
    } finally {
    }
    return Result.ok(SecondKillStateEnum.SUCCESS);
}

Dao层

@Repository
public interface SecondKillMapper extends BaseMapper<SecondKill> {
    /**
     * 将此行数据进行加锁,当整个方法将事务提交后,才会解锁
     * @param skgId
     * @return
     */
    @Select(value = "SELECT * FROM seckill WHERE seckill_id=#{skgId} FOR UPDATE")
    SecondKill querySecondKillForUpdate(@Param("skgId") Long skgId);
}

上面是利用for update进行对查询数据加锁,加的是行锁

3.4 方式四(悲观锁二)

悲观锁的第二种方式就是利用update更新命令来加表锁

/**
 * UPDATE锁表
 * @param skgId  商品id
 * @param userId    用户id
 * @return
 */
@Override
@Transactional(rollbackFor = Exception.class)
public Result startSecondKillByUpdateTwo(long skgId, long userId) {
    try {
        // 不校验,直接扣库存更新
        int result = secondKillMapper.updateSecondKillById(skgId);
        if (result > 0) {
            //创建订单
            SuccessKilled killed = new SuccessKilled();
            killed.setSeckillId(skgId);
            killed.setUserId(userId);
            killed.setState((short) 0);
            killed.setCreateTime(new Timestamp(System.currentTimeMillis()));
            successKilledMapper.insert(killed);
            //支付
            Payment payment = new Payment();
            payment.setSeckillId(skgId);
            payment.setSeckillId(skgId);
            payment.setUserId(userId);
            payment.setMoney(40);
            payment.setState((short) 1);
            payment.setCreateTime(new Timestamp(System.currentTimeMillis()));
            paymentMapper.insert(payment);
        } else {
            return Result.error(SecondKillStateEnum.END);
        }
    } catch (Exception e) {
        throw new ScorpiosException("异常了个乖乖");
    } finally {
    }
    return Result.ok(SecondKillStateEnum.SUCCESS);
}

Dao层

@Repository
public interface SecondKillMapper extends BaseMapper<SecondKill> {
    /**
     * 将此行数据进行加锁,当整个方法将事务提交后,才会解锁
     * @param skgId
     * @return
     */
    @Select(value = "SELECT * FROM seckill WHERE seckill_id=#{skgId} FOR UPDATE")
    SecondKill querySecondKillForUpdate(@Param("skgId") Long skgId);
    @Update(value = "UPDATE seckill SET number=number-1 WHERE seckill_id=#{skgId} AND number > 0")
    int updateSecondKillById(@Param("skgId") long skgId);
}

3.5 方式五(乐观锁)

乐观锁,顾名思义,就是对操作结果很乐观,通过利用version字段来判断数据是否被修改

乐观锁,不进行库存数量的校验,直接做库存扣减

这里使用的乐观锁会出现大量的数据更新异常(抛异常就会导致购买失败)、如果配置的抢购人数比较少、比如120:100(人数:商品) 会出现少买的情况,不推荐使用乐观锁。

@ApiOperation(value="秒杀实现方式五——乐观锁")
@PostMapping("/start/opt/lock")
public Result startOptLock(long skgId){
    try {
        log.info("开始秒杀方式五...");
        final long userId = (int) (new Random().nextDouble() * (99999 - 10000 + 1)) + 10000;
        // 参数添加了购买数量
        Result result = secondKillService.startSecondKillByPesLock(skgId, userId,1);
        if(result != null){
            log.info("用户:{}--{}", userId, result.get("msg"));
        }else{
            log.info("用户:{}--{}", userId, "哎呦喂,人也太多了,请稍后!");
        }
    } catch (Exception e) {
        e.printStackTrace();
    }
    return Result.ok();
}
@Override
@Transactional(rollbackFor = Exception.class)
public Result startSecondKillByPesLock(long skgId, long userId, int number) {
    // 乐观锁,不进行库存数量的校验,直接
    try {
        SecondKill kill = secondKillMapper.selectById(skgId);
        // 剩余的数量应该要大于等于秒杀的数量
        if(kill.getNumber() >= number) {
            int result = secondKillMapper.updateSecondKillByVersion(number,skgId,kill.getVersion());
            if (result > 0) {
                //创建订单
                SuccessKilled killed = new SuccessKilled();
                killed.setSeckillId(skgId);
                killed.setUserId(userId);
                killed.setState((short) 0);
                killed.setCreateTime(new Timestamp(System.currentTimeMillis()));
                successKilledMapper.insert(killed);
                //支付
                Payment payment = new Payment();
                payment.setSeckillId(skgId);
                payment.setSeckillId(skgId);
                payment.setUserId(userId);
                payment.setMoney(40);
                payment.setState((short) 1);
                payment.setCreateTime(new Timestamp(System.currentTimeMillis()));
                paymentMapper.insert(payment);
            } else {
                return Result.error(SecondKillStateEnum.END);
            }
        }
    } catch (Exception e) {
        throw new ScorpiosException("异常了个乖乖");
    } finally {
    }
    return Result.ok(SecondKillStateEnum.SUCCESS);
}
@Repository
public interface SecondKillMapper extends BaseMapper<SecondKill> {
    /**
     * 将此行数据进行加锁,当整个方法将事务提交后,才会解锁
     * @param skgId
     * @return
     */
    @Select(value = "SELECT * FROM seckill WHERE seckill_id=#{skgId} FOR UPDATE")
    SecondKill querySecondKillForUpdate(@Param("skgId") Long skgId);
    @Update(value = "UPDATE seckill SET number=number-1 WHERE seckill_id=#{skgId} AND number > 0")
    int updateSecondKillById(@Param("skgId") long skgId);
    @Update(value = "UPDATE seckill  SET number=number-#{number},version=version+1 WHERE seckill_id=#{skgId} AND version = #{version}")
    int updateSecondKillByVersion(@Param("number") int number, @Param("skgId") long skgId, @Param("version")int version);
}

乐观锁会出现大量的数据更新异常(抛异常就会导致购买失败),会出现少买的情况,不推荐使用乐观锁

3.6 方式六(阻塞队列)

利用阻塞队类,也可以解决高并发问题。其思想就是把接收到的请求按顺序存放到队列中,消费者线程逐一从队列里取数据进行处理,看下具体代码。

阻塞队列:这里使用静态内部类的方式来实现单例模式,在并发条件下不会出现问题。

// 秒杀队列(固定长度为100)
public class SecondKillQueue {
    // 队列大小
    static final int QUEUE_MAX_SIZE = 100;
    // 用于多线程间下单的队列
    static BlockingQueue<SuccessKilled> blockingQueue = new LinkedBlockingQueue<SuccessKilled>(QUEUE_MAX_SIZE);
    // 使用静态内部类,实现单例模式
    private SecondKillQueue(){};
    private static class SingletonHolder{
        // 静态初始化器,由JVM来保证线程安全
        private  static SecondKillQueue queue = new SecondKillQueue();
    }
    /**
     * 单例队列
     * @return
     */
    public static SecondKillQueue getSkillQueue(){
        return SingletonHolder.queue;
    }
    /**
     * 生产入队
     * @param kill
     * @throws InterruptedException
     * add(e) 队列未满时,返回true;队列满则抛出IllegalStateException(“Queue full”)异常——AbstractQueue
     * put(e) 队列未满时,直接插入没有返回值;队列满时会阻塞等待,一直等到队列未满时再插入。
     * offer(e) 队列未满时,返回true;队列满时返回false。非阻塞立即返回。
     * offer(e, time, unit) 设定等待的时间,如果在指定时间内还不能往队列中插入数据则返回false,插入成功返回true。
     */
    public  Boolean  produce(SuccessKilled kill) {
        return blockingQueue.offer(kill);
    }
    /**
     * 消费出队
     * poll() 获取并移除队首元素,在指定的时间内去轮询队列看有没有首元素有则返回,否者超时后返回null
     * take() 与带超时时间的poll类似不同在于take时候如果当前队列空了它会一直等待其他线程调用notEmpty.signal()才会被唤醒
     */
    public  SuccessKilled consume() throws InterruptedException {
        return blockingQueue.take();
    }
    /**
     * 获取队列大小
     * @return
     */
    public int size() {
        return blockingQueue.size();
    }
}

消费秒杀队列:实现ApplicationRunner接口

// 消费秒杀队列
@Slf4j
@Component
public class TaskRunner implements ApplicationRunner{
    @Autowired
    private SecondKillService seckillService;
    @Override
    public void run(ApplicationArguments var){
        new Thread(() -> {
            log.info("队列启动成功");
            while(true){
                try {
                    // 进程内队列
                    SuccessKilled kill = SecondKillQueue.getSkillQueue().consume();
                    if(kill != null){
                        Result result = seckillService.startSecondKillByAop(kill.getSeckillId(), kill.getUserId());
                        if(result != null && result.equals(Result.ok(SecondKillStateEnum.SUCCESS))){
                            log.info("TaskRunner,result:{}",result);
                            log.info("TaskRunner从消息队列取出用户,用户:{}{}",kill.getUserId(),"秒杀成功");
                        }
                    }
                } catch (InterruptedException e) {
                    e.printStackTrace();
                }
            }
        }).start();
    }
}
@ApiOperation(value="秒杀实现方式六——消息队列")
@PostMapping("/start/queue")
public Result startQueue(long skgId){
    try {
        log.info("开始秒杀方式六...");
        final long userId = (int) (new Random().nextDouble() * (99999 - 10000 + 1)) + 10000;
        SuccessKilled kill = new SuccessKilled();
        kill.setSeckillId(skgId);
        kill.setUserId(userId);
        Boolean flag = SecondKillQueue.getSkillQueue().produce(kill);
        // 虽然进入了队列,但是不一定能秒杀成功 进队出队有时间间隙
        if(flag){
            log.info("用户:{}{}",kill.getUserId(),"秒杀成功");
        }else{
            log.info("用户:{}{}",userId,"秒杀失败");
        }
    } catch (Exception e) {
        e.printStackTrace();
    }
    return Result.ok();
}

注意:在业务层和AOP方法中,不能抛出任何异常, throw new RuntimeException()这些抛异常代码要注释掉。因为一旦程序抛出异常就会停止,导致消费秒杀队列进程终止!

使用阻塞队列来实现秒杀,有几点要注意:

  • 消费秒杀队列中调用业务方法加锁与不加锁情况一样,也就是seckillService.startSecondKillByAop()seckillService.startSecondKillByLock()方法结果一样,这也很好理解
  • 当队列长度与商品数量一致时,会出现少卖的现象,可以调大数值
  • 下面是队列长度1000,商品数量1000,并发数2000情况下出现的少卖

3.7.方式七(Disruptor队列)

Disruptor是个高性能队列,研发的初衷是解决内存队列的延迟问题,在性能测试中发现竟然与I/O操作处于同样的数量级,基于Disruptor开发的系统单线程能支撑每秒600万订单。

// 事件生成工厂(用来初始化预分配事件对象)
public class SecondKillEventFactory implements EventFactory<SecondKillEvent> {
    @Override
    public SecondKillEvent newInstance() {
        return new SecondKillEvent();
    }
}
// 事件对象(秒杀事件)
public class SecondKillEvent implements Serializable {
    private static final long serialVersionUID = 1L;
    private long seckillId;
    private long userId;
 // set/get方法略
}
// 使用translator方式生产者
public class SecondKillEventProducer {
    private final static EventTranslatorVararg<SecondKillEvent> translator = (seckillEvent, seq, objs) -> {
        seckillEvent.setSeckillId((Long) objs[0]);
        seckillEvent.setUserId((Long) objs[1]);
    };
    private final RingBuffer<SecondKillEvent> ringBuffer;
    public SecondKillEventProducer(RingBuffer<SecondKillEvent> ringBuffer){
        this.ringBuffer = ringBuffer;
    }
    public void secondKill(long seckillId, long userId){
        this.ringBuffer.publishEvent(translator, seckillId, userId);
    }
}
// 消费者(秒杀处理器)
@Slf4j
public class SecondKillEventConsumer implements EventHandler<SecondKillEvent> {
    private SecondKillService secondKillService = (SecondKillService) SpringUtil.getBean("secondKillService");
    @Override
    public void onEvent(SecondKillEvent seckillEvent, long seq, boolean bool) {
        Result result = secondKillService.startSecondKillByAop(seckillEvent.getSeckillId(), seckillEvent.getUserId());
        if(result.equals(Result.ok(SecondKillStateEnum.SUCCESS))){
            log.info("用户:{}{}",seckillEvent.getUserId(),"秒杀成功");
        }
    }
}
public class DisruptorUtil {
    static Disruptor<SecondKillEvent> disruptor;
    static{
        SecondKillEventFactory factory = new SecondKillEventFactory();
        int ringBufferSize = 1024;
        ThreadFactory threadFactory = runnable -> new Thread(runnable);
        disruptor = new Disruptor<>(factory, ringBufferSize, threadFactory);
        disruptor.handleEventsWith(new SecondKillEventConsumer());
        disruptor.start();
    }
    public static void producer(SecondKillEvent kill){
        RingBuffer<SecondKillEvent> ringBuffer = disruptor.getRingBuffer();
        SecondKillEventProducer producer = new SecondKillEventProducer(ringBuffer);
        producer.secondKill(kill.getSeckillId(),kill.getUserId());
    }
}
@ApiOperation(value="秒杀实现方式七——Disruptor队列")
@PostMapping("/start/disruptor")
public Result startDisruptor(long skgId){
    try {
        log.info("开始秒杀方式七...");
        final long userId = (int) (new Random().nextDouble() * (99999 - 10000 + 1)) + 10000;
        SecondKillEvent kill = new SecondKillEvent();
        kill.setSeckillId(skgId);
        kill.setUserId(userId);
        DisruptorUtil.producer(kill);
    } catch (Exception e) {
        e.printStackTrace();
    }
    return Result.ok();
}

经过测试,发现使用Disruptor队列队列,与自定义队列有着同样的问题,也会出现超卖的情况,但效率有所提高。

4. 小结

对于上面七种实现并发的方式,做一下总结:

  • 一、二方式是在代码中利用锁和事务的方式解决了并发问题,主要解决的是锁要加载事务之前
  • 三、四、五方式主要是数据库的锁来解决并发问题,方式三是利用for upate对表加行锁,方式四是利用update来对表加锁,方式五是通过增加version字段来控制数据库的更新操作,方式五的效果最差
  • 六、七方式是通过队列来解决并发问题,这里需要特别注意的是,在代码中不能通过throw抛异常,否则消费线程会终止,而且由于进队和出队存在时间间隙,会导致商品少卖

上面所有的情况都经过代码测试,测试分一下三种情况:

  • 并发数1000,商品数100
  • 并发数1000,商品数1000
  • 并发数2000,商品数1000

思考:分布式情况下如何解决并发问题呢?下次继续试验。

源码地址:




相关文章
|
8月前
|
负载均衡 前端开发 算法
聊聊高并发应用中电商秒杀场景的方案实现
聊聊高并发应用中电商秒杀场景的方案实现
316 0
|
缓存 NoSQL 数据库
【高并发】秒杀系统设计思路
【高并发】秒杀系统设计思路
219 0
|
8月前
|
消息中间件 存储 NoSQL
面试题解析:如何解决分布式秒杀系统中的库存超卖问题?
面试题解析:如何解决分布式秒杀系统中的库存超卖问题?
456 0
|
SQL NoSQL 关系型数据库
【并发】高并发下库存超卖问题如何解决?
【并发】高并发下库存超卖问题如何解决?
2606 0
|
数据采集 存储 调度
使用多线程爬虫提高商品秒杀系统的吞吐量处理能力
使用多线程爬虫提高商品秒杀系统的吞吐量处理能力
|
消息中间件 安全 Java
实现高并发秒杀的 7 种方式,写的太好了,建议收藏!!
实现高并发秒杀的 7 种方式,写的太好了,建议收藏!!
实现高并发秒杀的 7 种方式,写的太好了,建议收藏!!
|
消息中间件 缓存 NoSQL
redis缓存一致性问题 & 秒杀场景下的实战分析
本篇文章讲述了在高并发场景下 redis缓存一致性问题 & 秒杀场景下的实战分析, 数据库缓存不一致解决方案, 缓存与数据库双写一致以及秒杀场景下缓存一致性问题的实战解决方案
626 0
|
缓存 CDN
实现高并发秒杀的7种方式 建议收藏!!
实现高并发秒杀的7种方式 建议收藏!!
137 0
|
消息中间件 JavaScript 小程序
实现高并发秒杀的七种方式(1)
实现高并发秒杀的七种方式(1)
|
安全 网络协议 Shell
高并发服务器的限制有哪些,如何提高并发量
高并发服务器的限制有哪些,如何提高并发量
高并发服务器的限制有哪些,如何提高并发量