面试题解析:如何解决分布式秒杀系统中的库存超卖问题?

本文涉及的产品
云数据库 Tair(兼容Redis),内存型 2GB
Redis 开源版,标准版 2GB
推荐场景:
搭建游戏排行榜
云解析 DNS,旗舰版 1个月
简介: 面试题解析:如何解决分布式秒杀系统中的库存超卖问题?

面试题解析:如何解决分布式秒杀系统中的库存超卖问题?

问题背景

在构建分布式秒杀系统时,一个常见的挑战是如何防止库存超卖问题。当多个用户同时抢购同一商品时,如果不加以控制,可能导致库存出现负数,影响系统的稳定性和用户体验。本文将讨论这个问题,并提供一种综合的解决方案。

解决思路

1. 乐观锁机制

在数据库层面使用乐观锁,通过版本号或时间戳来确保并发更新的一致性。在减库存的操作中,先查询当前库存版本,然后在更新库存的同时更新版本号,确保在更新时库存版本没有被其他线程修改。

2. Redis预减库存

通过将商品库存提前加载到Redis缓存中,用户抢购时,先从Redis中扣减库存,再异步将扣减后的库存同步到数据库。这减轻了数据库的压力,提高了系统的并发处理能力。

3. 分布式锁

在关键操作上使用分布式锁,确保同一时刻只有一个请求能够执行关键操作,防止多个用户并发执行导致的问题。使用Redis的分布式锁实现,保证锁的互斥性和超时处理。

4. 消息队列确保顺序

将用户抢购请求放入消息队列,保证抢购的顺序。在消息队列中使用分布式锁来确保同一时刻只有一个消息能够被消费,以保证订单生成的有序性。

5. 限制抢购频率

使用Redis的计数器来记录用户的请求次数,并设置一个合理的抢购频率限制。这样可以避免某个用户通过高频请求导致超卖。

详细实现方案

1. 乐观锁机制

@Entity
public class Product {
    @Id
    private Long id;
    private Integer stock;
    @Version
    private Long version;
}
@Service
public class ProductService {
    @Transactional
    public void purchaseProduct(Long productId, int quantity) {
        Product product = productRepository.findById(productId).orElseThrow(ProductNotFoundException::new);
        if (product.getStock() >= quantity) {
            product.setStock(product.getStock() - quantity);
            productRepository.save(product);
            // 生成订单等后续操作...
        } else {
            // 库存不足,处理失败逻辑...
        }
    }
}

2. Redis预减库存

@Service
public class RedisStockService {
    private final String STOCK_KEY_PREFIX = "stock:product:";
    @Autowired
    private RedisTemplate<String, Integer> redisTemplate;
    public int getStock(Long productId) {
        String key = STOCK_KEY_PREFIX + productId;
        return redisTemplate.opsForValue().get(key);
    }
    public void reduceStock(Long productId, int quantity) {
        String key = STOCK_KEY_PREFIX + productId;
        redisTemplate.opsForValue().decrement(key, quantity);
        // 异步更新数据库库存...
    }
}

3. 分布式锁

@Component
public class DistributedLockService {
    @Autowired
    private StringRedisTemplate redisTemplate;
    public boolean tryLock(String lockKey, String requestId, long expireTime) {
        Boolean locked = redisTemplate.opsForValue().setIfAbsent(lockKey, requestId, expireTime, TimeUnit.MILLISECONDS);
        return Boolean.TRUE.equals(locked);
    }
    public void unlock(String lockKey, String requestId) {
        String storedRequestId = redisTemplate.opsForValue().get(lockKey);
        if (requestId.equals(storedRequestId)) {
            redisTemplate.delete(lockKey);
        }
    }
}

4. 消息队列确保顺序

@Service
public class RabbitMQService {
    @Autowired
    private RabbitTemplate rabbitTemplate;
    public void sendSeckillOrderRequest(Long userId, Long productId) {
        // 构建消息体...
        rabbitTemplate.convertAndSend("seckill.exchange", "seckill.order", message);
    }
}

5. 限制抢购频率

@Service
public class RequestLimitService {
    private final String REQUEST_LIMIT_KEY_PREFIX = "request:limit:user:";
    @Autowired
    private RedisTemplate<String, Integer> redisTemplate;
    public boolean checkRequestLimit(Long userId, int limit) {
        String key = REQUEST_LIMIT_KEY_PREFIX + userId;
        int count = redisTemplate.opsForValue().increment(key, 1);
        if (count > limit) {
            // 超过频率限制,处理失败逻辑...
            return false;
        }
        return true;
    }
}

示例回答:

“首先,我们采用乐观锁的机制,通过数据库版本号或时间戳来确保并发更新的一致性。这可以在减库存的操作中先查询当前库存版本,然后在更新库存的同时更新版本号。”

“其次,为了减轻数据库压力,我们通过Redis预减库存的方式。将商品库存提前加载到Redis缓存中,用户抢购时先从Redis中扣减库存,再异步将扣减后的库存同步到数据库。”

“为了确保关键操作的原子性,我们使用分布式锁,主要采用Redis的分布式锁实现。这可以确保在同一时刻只有一个请求能够执行关键操作,防止多个用户并发执行导致的问题。”

“此外,通过将用户抢购请求放入消息队列,保证抢购的顺序。在消息队列中使用分布式锁来确保同一时刻只有一个消息能够被消费,从而保证订单生成的有序性。”

“最后,为了避免某个用户通过高频请求导致超卖,我们使用Redis的计数器来记录用户的请求次数,并设置一个合理的抢购频率限制。”

  • 重点突出分布式锁的设计,包括锁的获取和释放机制、超时处理等。

示例回答:

锁的获取机制

在分布式环境中,为了确保同一时刻只有一个实例能够成功获取锁,我们使用了Redis的原子操作 setIfAbsent。这个操作是原子的,即在单个 Redis 命令中完成,可以确保在高并发情况下的互斥性。setIfAbsent会在键不存在的情况下设置键的值,如果键已经存在,那么该操作将不执行任何操作。

示例代码:

public boolean tryLock(String lockKey, String requestId, long expireTime) {
    Boolean locked = redisTemplate.opsForValue().setIfAbsent(lockKey, requestId, expireTime, TimeUnit.MILLISECONDS);
    return Boolean.TRUE.equals(locked);
}

在这个方法中,lockKey 是锁的唯一标识,requestId 是请求的唯一标识(通常可以使用UUID)。expireTime 是锁的过期时间,确保在极端情况下锁会自动释放,避免死锁。

超时处理

合理设置锁的过期时间是非常重要的,过长可能导致资源长时间被占用,而过短可能在执行关键操作时锁已经被释放。这里,我们使用 expireTime 参数来设置锁的过期时间,通常使用毫秒为单位。

示例代码:

public boolean tryLock(String lockKey, String requestId, long expireTime) {
    Boolean locked = redisTemplate.opsForValue().setIfAbsent(lockKey, requestId, expireTime, TimeUnit.MILLISECONDS);
    return Boolean.TRUE.equals(locked);
}

在上述代码中,expireTime 即为锁的过期时间,以毫秒为单位。合理设置这个值,可以避免因异常情况而导致的死锁,确保系统在正常情况下能够及时释放锁。

锁的释放机制

释放锁的时候,我们首先获取存储在 Redis 中的请求 ID,确保只有持有锁的实例才能释放锁。这一步是为了确保锁的互斥性,即同一时刻只有一个实例能够执行关键操作。

示例代码:

public void unlock(String lockKey, String requestId) {
    String storedRequestId = redisTemplate.opsForValue().get(lockKey);
    if (requestId.equals(storedRequestId)) {
        redisTemplate.delete(lockKey);
    }
}

在这个方法中,我们首先通过 get 操作获取存储在 Redis 中的请求 ID。如果当前请求的 ID 与存储的 ID 相同,说明当前实例持有该锁,然后通过 delete 操作删除该锁。

相关文章
|
5月前
|
存储 缓存 算法
分布式锁服务深度解析:以Apache Flink的Checkpointing机制为例
【10月更文挑战第7天】在分布式系统中,多个进程或节点可能需要同时访问和操作共享资源。为了确保数据的一致性和系统的稳定性,我们需要一种机制来协调这些进程或节点的访问,避免并发冲突和竞态条件。分布式锁服务正是为此而生的一种解决方案。它通过在网络环境中实现锁机制,确保同一时间只有一个进程或节点能够访问和操作共享资源。
201 3
|
2月前
|
SQL Java 关系型数据库
【📕分布式锁通关指南 01】从解决库存超卖开始加锁的初体验
本文通过电商场景中的库存超卖问题,深入探讨了JVM锁、MySQL悲观锁和乐观锁的实现及其局限性。首先介绍了单次访问下库存扣减逻辑的正常运行,但在高并发场景下出现了超卖问题。接着分析了JVM锁在多例模式、事务模式和集群模式下的失效情况,并提出了使用数据库锁机制(如悲观锁和乐观锁)来解决并发问题。 悲观锁通过`update`语句或`select for update`实现,能有效防止超卖,但存在锁范围过大、性能差等问题。乐观锁则通过版本号或时间戳实现,适合读多写少的场景,但也面临高并发写操作性能低和ABA问题。 最终,文章强调没有完美的方案,只有根据具体业务场景选择合适的锁机制。
78 12
【📕分布式锁通关指南 01】从解决库存超卖开始加锁的初体验
|
3月前
|
物联网 调度 vr&ar
鸿蒙HarmonyOS应用开发 |鸿蒙技术分享HarmonyOS Next 深度解析:分布式能力与跨设备协作实战
鸿蒙技术分享:HarmonyOS Next 深度解析 随着万物互联时代的到来,华为发布的 HarmonyOS Next 在技术架构和生态体验上实现了重大升级。本文从技术架构、生态优势和开发实践三方面深入探讨其特点,并通过跨设备笔记应用实战案例,展示其强大的分布式能力和多设备协作功能。核心亮点包括新一代微内核架构、统一开发语言 ArkTS 和多模态交互支持。开发者可借助 DevEco Studio 4.0 快速上手,体验高效、灵活的开发过程。 239个字符
281 13
鸿蒙HarmonyOS应用开发 |鸿蒙技术分享HarmonyOS Next 深度解析:分布式能力与跨设备协作实战
|
2月前
|
存储 分布式计算 Hadoop
基于Java的Hadoop文件处理系统:高效分布式数据解析与存储
本文介绍了如何借鉴Hadoop的设计思想,使用Java实现其核心功能MapReduce,解决海量数据处理问题。通过类比图书馆管理系统,详细解释了Hadoop的两大组件:HDFS(分布式文件系统)和MapReduce(分布式计算模型)。具体实现了单词统计任务,并扩展支持CSV和JSON格式的数据解析。为了提升性能,引入了Combiner减少中间数据传输,以及自定义Partitioner解决数据倾斜问题。最后总结了Hadoop在大数据处理中的重要性,鼓励Java开发者学习Hadoop以拓展技术边界。
81 7
|
3月前
|
存储 SpringCloudAlibaba Java
【SpringCloud Alibaba系列】一文全面解析Zookeeper安装、常用命令、JavaAPI操作、Watch事件监听、分布式锁、集群搭建、核心理论
一文全面解析Zookeeper安装、常用命令、JavaAPI操作、Watch事件监听、分布式锁、集群搭建、核心理论。
【SpringCloud Alibaba系列】一文全面解析Zookeeper安装、常用命令、JavaAPI操作、Watch事件监听、分布式锁、集群搭建、核心理论
|
4月前
|
供应链 算法 安全
深度解析区块链技术的分布式共识机制
深度解析区块链技术的分布式共识机制
121 0
|
5月前
|
消息中间件 中间件 数据库
NServiceBus:打造企业级服务总线的利器——深度解析这一面向消息中间件如何革新分布式应用开发与提升系统可靠性
【10月更文挑战第9天】NServiceBus 是一个面向消息的中间件,专为构建分布式应用程序设计,特别适用于企业级服务总线(ESB)。它通过消息队列实现服务间的解耦,提高系统的可扩展性和容错性。在 .NET 生态中,NServiceBus 提供了强大的功能,支持多种传输方式如 RabbitMQ 和 Azure Service Bus。通过异步消息传递模式,各组件可以独立运作,即使某部分出现故障也不会影响整体系统。 示例代码展示了如何使用 NServiceBus 发送和接收消息,简化了系统的设计和维护。
106 3
|
5月前
|
存储 缓存 数据处理
深度解析:Hologres分布式存储引擎设计原理及其优化策略
【10月更文挑战第9天】在大数据时代,数据的规模和复杂性不断增加,这对数据库系统提出了更高的要求。传统的单机数据库难以应对海量数据处理的需求,而分布式数据库通过水平扩展提供了更好的解决方案。阿里云推出的Hologres是一个实时交互式分析服务,它结合了OLAP(在线分析处理)与OLTP(在线事务处理)的优势,能够在大规模数据集上提供低延迟的数据查询能力。本文将深入探讨Hologres分布式存储引擎的设计原理,并介绍一些关键的优化策略。
302 0
|
7月前
|
存储 Java
【IO面试题 四】、介绍一下Java的序列化与反序列化
Java的序列化与反序列化允许对象通过实现Serializable接口转换成字节序列并存储或传输,之后可以通过ObjectInputStream和ObjectOutputStream的方法将这些字节序列恢复成对象。
|
4月前
|
存储 缓存 算法
面试官:单核 CPU 支持 Java 多线程吗?为什么?被问懵了!
本文介绍了多线程环境下的几个关键概念,包括时间片、超线程、上下文切换及其影响因素,以及线程调度的两种方式——抢占式调度和协同式调度。文章还讨论了减少上下文切换次数以提高多线程程序效率的方法,如无锁并发编程、使用CAS算法等,并提出了合理的线程数量配置策略,以平衡CPU利用率和线程切换开销。
面试官:单核 CPU 支持 Java 多线程吗?为什么?被问懵了!

热门文章

最新文章

推荐镜像

更多