【深度学习03】TensorBoard+Transforms+Dataload的使用

简介: 【深度学习03】TensorBoard+Transforms+Dataload的使用

⭐本文内容:TensorBoard、Transforms、Dataload


TensorBoard


from torch.utils.tensorboard import SummaryWriter
writer = SummaryWriter("logs")
for i in range(100):
  writer.add_scalar("y=x",i,i)
writer.close()


%load_ext tensorboard
%tensorboard --logdir /content/logs #注意路径


%tensorboard --logdir /content/logs:保存这个插件,到logs文件夹中


writer = SummaryWriter("logs"):()里面的logs,是%tensorboard --logdir /content/logs的logs


类“SummaryWriter”提供了创建事件文件的高级API 并添加摘要和事件。类更新 异步文件内容。这允许培训程序调用方法 直接从训练循环向文件中添加数据,而不会减慢速度训练


writer.add_image()函数


  • 示例:writer.add_image("test",img,1,dataformats='HWC') #注意dataformats='HWC'表示通道、长、宽的排序


  • 作用:添加image到tensorBoard中


  • 参数:


。img_tensor:数据类型(torch.Tensor, numpy.array, or string/blobname)


202205061956751.png


Transforms


Transforms:图像预处理的工具


eeab8c4c4d00eaacbf6435d0bd0b8574.png


变换数据类型:tensor_trans = transforms.ToTensor()(img),注意在()后面加上(img)


Dataload


import torchvision
from torch.utils.data import DataLoader
# 准备测试集 
test_data = torchvision.datasets.CIFAR10("/content/drive/MyDrive/Learn-                      pytorch/dataset",train=False,download=True,transform=torchvision.transforms.ToTensor())
test_loader = DataLoader(dataset=test_data,batch_size=64,shuffle=True,num_workers=0)


torchvision.datasets()函数


  • 示例:test_data = torchvision.datasets.CIFAR10("/content/drive/MyDrive/Learn-pytorch/dataset",train=False,download=True,transform=torchvision.transforms.ToTensor())


  • 作用:加载官方自带的数据集,返回img,target(图片+标签)


  • 参数:


。.CIFAR10:数据集名称

。“/content/drive/MyDrive/Learn-pytorch/dataset”:数据集的路径,如没有则新建一个文件夹

。train=False:是不是用来训练的,如:train=False表示是测试集

。download=True:是否下载

。transform=torchvision.transforms.ToTensor():数据格式的转换


DataLoader()函数


  • 示例:test_loader = DataLoader(dataset=test_data,batch_size=64,shuffle=True,num_workers=0)
  • 作用:和torchvision.datasets()联用,将数据集以一定的方式打包
  • 参数:

。batch_size=64:一个test_data随机抓取64张图片


writer = SummaryWriter("dataloader")
step = 0
for data in test_loader:
  imgs,targets = data
  writer.add_images("test_image",imgs,step)
  step = step+1
writer.close()


🚀注意SummaryWriter(“dataloader”)、writer.add_images

相关文章
|
机器学习/深度学习 数据可视化 TensorFlow
【深度学习】实验08 TensorBoard案例
【深度学习】实验08 TensorBoard案例
69 0
|
机器学习/深度学习 监控 数据可视化
深度学习模型训练可视化(TensorBoard可视化)
深度学习模型训练可视化(TensorBoard可视化)
259 0
|
机器学习/深度学习 数据可视化 PyTorch
【深度学习】pytorch使用tensorboard可视化实验数据
【深度学习】pytorch使用tensorboard可视化实验数据
233 0
【深度学习】pytorch使用tensorboard可视化实验数据
|
机器学习/深度学习 数据可视化 TensorFlow
学习笔记 | 深度学习开发—TensorFlow实践(TensorBoard可视化工具)
学习笔记 | 深度学习开发—TensorFlow实践(TensorBoard可视化工具)
学习笔记 | 深度学习开发—TensorFlow实践(TensorBoard可视化工具)
|
机器学习/深度学习 存储 数据可视化
深度学习:Tensorflow变量op和可视化TensorBoard
深度学习:Tensorflow变量op和可视化TensorBoard
244 0
|
8天前
|
机器学习/深度学习 人工智能 测试技术
深度学习在图像识别中的应用与挑战
本文探讨了深度学习技术,尤其是卷积神经网络(CNN)在图像识别任务中的最新进展和面临的主要挑战。通过分析不同的网络架构、训练技巧以及优化策略,文章旨在提供一个全面的概览,帮助研究人员和实践者更好地理解和应用这些技术。
38 9
|
4天前
|
机器学习/深度学习 人工智能 算法
深度学习在图像识别中的应用与挑战
本文探讨了深度学习技术在图像识别领域的应用,重点分析了卷积神经网络(CNN)的工作原理及其在处理图像数据方面的优势。通过案例研究,展示了深度学习如何提高图像识别的准确性和效率。同时,文章也讨论了当前面临的主要挑战,包括数据不足、过拟合问题以及计算资源的需求,并提出了相应的解决策略。
|
6天前
|
机器学习/深度学习 分布式计算 并行计算
深度学习在图像识别中的应用与挑战
本文深入探讨了深度学习技术在图像识别领域的应用,分析了当前主流的卷积神经网络(CNN)架构,并讨论了在实际应用中遇到的挑战和可能的解决方案。通过对比研究,揭示了不同网络结构对识别准确率的影响,并提出了优化策略。此外,文章还探讨了深度学习模型在处理大规模数据集时的性能瓶颈,以及如何通过硬件加速和算法改进来提升效率。
|
6天前
|
机器学习/深度学习 人工智能 计算机视觉
深度学习在图像识别中的应用与挑战
【10月更文挑战第38天】本文将深入探讨深度学习如何在图像识别领域大放异彩,并揭示其背后的技术细节和面临的挑战。我们将通过实际案例,了解深度学习如何改变图像处理的方式,以及它在实际应用中遇到的困难和限制。
|
6天前
|
机器学习/深度学习 传感器 自动驾驶
深度学习在自动驾驶中的应用与挑战####
本文探讨了深度学习技术在自动驾驶领域的应用现状、面临的主要挑战及未来发展趋势。通过分析卷积神经网络(CNN)和循环神经网络(RNN)等关键算法在环境感知、决策规划中的作用,结合特斯拉Autopilot和Waymo的实际案例,揭示了深度学习如何推动自动驾驶技术向更高层次发展。文章还讨论了数据质量、模型泛化能力、安全性及伦理道德等问题,为行业研究者和开发者提供了宝贵的参考。 ####

相关实验场景

更多