软件测试|数据处理神器pandas教程(十)

简介: 软件测试|数据处理神器pandas教程(十)

在这里插入图片描述

前言

之前我们介绍了pandas处理时间以及pandas时间序列的内容,本文我们来介绍pandas处理时间差的有关操作。

Timedelta 表示时间差(或者时间增量),我们可以使用不同的时间单位来表示它,比如,天、小时、分、秒。时间差的最终的结果可以是正时间差,也可以是负时间差。

本文主要介绍创建 Timedelta (时间差)的方法以及与时间差相关的运算法则。

创建时间差对象

  1. 通过传递字符串可以创建 Timedelta 对象,示例如下:
import pandas as pd
print(pd.Timedelta('5 days 23 hours 50 minutes 23 seconds'))

------------------------
输出结果如下:
5 days 23:50:23
  1. 传递整数值和unit参数也可以创建一个 Timedelta 对象,示例如下:
import pandas as pd
print(pd.Timedelta(7,unit='h'))

--------------------------
输出结果如下:
0 days 07:00:00
  1. 数据偏移量,周(weeks)、天(days)、小时(hours)、分钟(minutes)、秒(milliseconds)、毫秒、微秒、纳秒都可以使用,示例如下:
import pandas as pd

print (pd.Timedelta(weeks=1,days=2,hours=6))


------------------------------
输出结果如下:
9 days 06:00:00

注:周会直接换算成天数,与天数相加,该方法不支持月份作为数据偏移量

  1. to_timedelta()

使用pd.to_timedelta()方法,将具有 timedelta 格式的值 (标量、数组、列表或 Series)转换为 Timedelta 类型。如果输入是 Series,则返回 Series;如果输入是标量,则返回值也为标量,其他情况输出 TimedeltaIndex。示例如下:

import pandas as pd
import numpy as np

print(pd.to_timedelta(['1 days 06:05:01.00003', '15.5us', 'nan']))
print(pd.to_timedelta(np.arange(5), unit='s'))
---------------
输出结果如下:
TimedeltaIndex(['1 days 06:05:01.000030', '0 days 00:00:00.000015500', NaT], dtype='timedelta64[ns]', freq=None)
TimedeltaIndex(['0 days 00:00:00', '0 days 00:00:01', '0 days 00:00:02',
                '0 days 00:00:03', '0 days 00:00:04'],
               dtype='timedelta64[ns]', freq=None)

算术操作

对datetime64[ns]类型的时间序列或时间戳做算术运算,其运算结果依然是datetime64[ns]数据类型。接下来,我们创建一个带有 Timedelta 与 datetime 的 DataFrame 对象,并对其做一些算术运算。

示例代码如下:

import pandas as pd
s = pd.Series(pd.date_range('2023-3-23', periods=5, freq='D'))
#推导式用法
td = pd.Series([ pd.Timedelta(days=i) for i in range(5)])
df = pd.DataFrame(dict(A = s, B = td))
print(df)

----------------------
输出结果如下:
           A      B
0 2023-03-23 0 days
1 2023-03-24 1 days
2 2023-03-25 2 days
3 2023-03-26 3 days
4 2023-03-27 4 days
  1. 加法运算
import pandas as pd
s = pd.Series(pd.date_range('2023-3-20', periods=3, freq='D'))
td = pd.Series([ pd.Timedelta(days=i) for i in range(3) ])
df = pd.DataFrame(dict(A = s, B = td))
#加法运算
df['C']=df['A']+df['B']
print(df)
------------------------
输出结果如下:
           A      B          C
0 2023-03-20 0 days 2023-03-20
1 2023-03-21 1 days 2023-03-22
2 2023-03-22 2 days 2023-03-24
  1. 减法运算
import pandas as pd
s = pd.Series(pd.date_range('2023-3-20', periods=3, freq='D'))
td = pd.Series([ pd.Timedelta(days=i) for i in range(3) ])
df = pd.DataFrame(dict(A = s, B = td))
df['C']=df['A']+df['B']
df['D']=df['C']-df['B']
print(df)

-------------------------
输出结果如下:
           A      B          C          D
0 2023-03-20 0 days 2023-03-20 2023-03-20
1 2023-03-21 1 days 2023-03-22 2023-03-21
2 2023-03-22 2 days 2023-03-24 2023-03-22

总结

本文主要介绍了pandas对于时间差的处理,与datetime的处理相比,pandas对于时间差的处理更加方便直接,后续我们将继续介绍pandas对字符串的处理。

相关文章
|
20天前
|
数据采集 存储 数据挖掘
Python数据分析:Pandas库的高效数据处理技巧
【10月更文挑战第27天】在数据分析领域,Python的Pandas库因其强大的数据处理能力而备受青睐。本文介绍了Pandas在数据导入、清洗、转换、聚合、时间序列分析和数据合并等方面的高效技巧,帮助数据分析师快速处理复杂数据集,提高工作效率。
51 0
|
16天前
|
缓存 测试技术 Apache
告别卡顿!Python性能测试实战教程,JMeter&Locust带你秒懂性能优化💡
告别卡顿!Python性能测试实战教程,JMeter&Locust带你秒懂性能优化💡
32 1
|
1月前
|
自然语言处理 机器人 Python
ChatGPT使用学习:ChatPaper安装到测试详细教程(一文包会)
ChatPaper是一个基于文本生成技术的智能研究论文工具,能够根据用户输入进行智能回复和互动。它支持快速下载、阅读论文,并通过分析论文的关键信息帮助用户判断是否需要深入了解。用户可以通过命令行或网页界面操作,进行论文搜索、下载、总结等。
51 1
ChatGPT使用学习:ChatPaper安装到测试详细教程(一文包会)
|
19天前
|
SQL 数据采集 数据挖掘
Pandas 教程
10月更文挑战第25天
28 2
|
21天前
|
存储 数据挖掘 数据处理
Python数据分析:Pandas库的高效数据处理技巧
【10月更文挑战第26天】Python 是数据分析领域的热门语言,Pandas 库以其高效的数据处理功能成为数据科学家的利器。本文介绍 Pandas 在数据读取、筛选、分组、转换和合并等方面的高效技巧,并通过示例代码展示其实际应用。
31 2
|
1月前
|
并行计算 大数据 数据处理
亿级数据处理,Pandas的高效策略
在大数据时代,数据量的爆炸性增长对处理技术提出更高要求。本文介绍如何利用Python的Pandas库及其配套工具高效处理亿级数据集,包括:采用Dask进行并行计算,分块读取以减少内存占用,利用数据库进行复杂查询,使用内存映射优化Pandas性能,以及借助PySpark实现分布式数据处理。通过这些方法,亿级数据处理变得简单高效,助力我们更好地挖掘数据价值。
63 1
|
1月前
|
缓存 测试技术 Apache
告别卡顿!Python性能测试实战教程,JMeter&Locust带你秒懂性能优化💡
【10月更文挑战第1天】告别卡顿!Python性能测试实战教程,JMeter&Locust带你秒懂性能优化💡
63 4
|
1月前
|
机器学习/深度学习 并行计算 大数据
【Python篇】深入挖掘 Pandas:机器学习数据处理的高级技巧
【Python篇】深入挖掘 Pandas:机器学习数据处理的高级技巧
87 3
|
2月前
|
机器学习/深度学习 数据处理 Python
从NumPy到Pandas:轻松转换Python数值库与数据处理利器
从NumPy到Pandas:轻松转换Python数值库与数据处理利器
79 0
|
1月前
|
数据采集 数据挖掘 API
Python数据分析加速器:深度挖掘Pandas与NumPy的高级功能
在Python数据分析的世界里,Pandas和NumPy无疑是两颗璀璨的明星,它们为数据科学家和工程师提供了强大而灵活的工具集,用于处理、分析和探索数据。今天,我们将一起深入探索这两个库的高级功能,看看它们如何成为数据分析的加速器。
41 1

热门文章

最新文章

下一篇
无影云桌面