《数据分析实战:基于EXCEL和SPSS系列工具的实践》——1.4 数据分析的流程

简介:

本节书摘来自华章计算机《数据分析实战:基于EXCEL和SPSS系列工具的实践》一书中的第1章,第1.4节,作者 纪贺元,更多章节内容可以访问云栖社区“华章计算机”公众号查看。

1.4 数据分析的流程

数据分析一般有数据采集、数据整理、制表、数据分析、数据呈现等多个阶段。当然,不是说每一个数据分析的过程都需要这些阶段,有的企业数据质量非常好,自然就不需要数据采集过程了;也有些数据分析并不怎么需要呈现过程。不过,为了方便读者理解,下面将介绍一个完整的流程。

1.4.1 数据采集

数据采集指为了保证数据分析能够顺利展开而进行的数据采集工作。数据采集工作的难度、跨度非常大,有的采集工作非常简单,仅仅是几个简单的邮件、电话,就能够完成数据的采集工作;有的数据采集工作则非常痛苦,甚至经常会出现采集不到数据的情况。

数据采集的难度一般表现在如下几个方面。

(1)数据根本就不存在

由于企业缺乏数据规划或者现场人员疏漏等原因,在采集数据的过程中,经常发现数据根本就不存在。

(2)数据过粗

如1.1.3节所述,企业经常在数据记录的颗粒度方面出问题,例如根据某企业的规定,项目的成本数据应该按照“天”为单位来记录,但是我们最后发现成本记录的单位是“月”,这中间的差别非常大。
(3)数据质量低下

数据的错误、对不上、缺漏等情况普遍存在,曾经有一个项目合作方对我说,如果严格校对数据质量,我们的数据可以删除70%。试想想,在30%的比较“靠谱”的数据上做分析,得出的结论是否靠谱?

(4)人为原因导致数据采集困难

一些人为原因也会导致数据采集的困难,包括部门之间的隔阂、人际关系等因素。

1.4.2 数据整理

但凡是做过数据分析的人都知道,数据整理是一个痛苦而且复杂的过程,很多数据拿到手之后,并不能马上做处理,而是要经过一个转换过程,请看图1-4所示的一个需要整理的数据案例。

image

从图1-4可以看出,A列的数据都是合并单元格格式,如果要对以上的数据进行透视表分析,需要进行如下的操作。

(1) 取消合并单元格

选中A列,点击EXCEL中的“开始”→“合并后居中”,取消合并单元格之后的数据效果如图1-5所示。

image

(2) 填充空白单元格

按F5键,点击“定位条件”,如图1-6所示。

image

在弹出的界面中选择“空值”,如图1-7所示。

这时工作表中的空白都被选中了,效果如图1-8所示。

image

在公式栏中输入“=A2”,也就是让每一个单元格都等于上一个单元格的值,然后按“Ctrl+Enter”组合键,空白处都填充好了。填充后的效果如图1-9所示。

image

以上只是一个小小的例子,我们在进行数据处理的时候,都要先进行各种数据整理。甚至有时数据整理的时间会占据数据分析时长的70%以上。

1.4.3 制表

制表是日常工作的重要组成部分,也是数据分析的重要组成部分。实际上不少企业已经把企业管理工作贯穿到报表的实现当中,通过一张张精心设计的报表,管理人员可以迅速了解企业的采购、生产、销售、售后、财务、人事、安全等相关信息。

企业常见的报表包括如下类型。

  • 采购报表:反映企业各部门的需求,供应商供货品类、价格等状况,采购项目进展状况等;
  • 生产报表:包括产量表、成本表、人力消耗表、设备故障表、安全质量表等;
  • 财务报表:包括销售输入管理、成本管控表、量本利分析表、流动资产管理表、负债管理表、投资项目决策表、财务预测表等;
  • 售后报表:包括样品跟踪表、设备状况跟踪、客户满意度跟踪、投诉建议表等;
  • 人事报表:包括人员状况、薪资福利、人员雇佣离职表等多个报表。

1.4.4 数据分析

数据分析的范围非常广泛,凡是基于业务需求出发且依托于数据进行分析的,就是数据分析。

企业的数据分析一般包括以下方面。

  • 营销数据分析:这是企业数据分析的主要部分,个人认为也是数据分析最迷人最有魅力的地方。营销数据分析包括营销整体状况分析、客户分析、产品线分析、促销分析、客户画像、客户购买原因分析、营销预测、营销异常值分析等。
  • 生产质量数据分析:包括生产态势分析、设备故障分析、生产成本分析、质量稳定性分析等。
  • 财务数据分析:财务数据分析也是数据分析的主要部分之一,在很多企业,营销数据和财务数据有很多交集,甚至我见过一些企业的营销数据基本上是在财务部进行汇总的。财务数据分析一般比较关心异常值分析、财务预测、成本结构、项目投融资决策等多个方面。企业的其他部门也有一些数据分析的需求,不过分布得比较零散。

1.4.5 数据展示(呈现)

数据展示这件事情的跨度很大,高度重视数据展示的大企业会购买类似Tableau这样的专业可视化软件,这类软件功能强大,能够承受大数据量的考验,且运转速度快;而一般的企业由于实力限制或者没有那么高层次的需求,通常利用EXCEL或者一些数据分析插件来优化图形展示效果即可。

相关文章
|
19天前
|
分布式计算 大数据 数据处理
从Excel到大数据:别让工具限制你的思维!
从Excel到大数据:别让工具限制你的思维!
143 85
|
2天前
|
人工智能 数据可视化 前端开发
Probly:开源 AI Excel表格工具,交互式生成数据分析结果与可视化图表
Probly 是一款结合电子表格功能与 Python 数据分析能力的 AI 工具,支持在浏览器中运行 Python 代码,提供交互式电子表格、数据可视化和智能分析建议,适合需要强大数据分析功能又希望操作简便的用户。
82 2
|
13天前
|
SQL JSON 数据可视化
基于 DIFY 的自动化数据分析实战
本文介绍如何使用DIFY搭建数据分析自动化流程,实现从输入需求到查询数据库、LLM分析再到可视化输出的全流程。基于经典的employees数据集和DIFY云端环境,通过LLM-SQL解析、SQL执行、LLM数据分析及ECharts可视化等模块,高效完成数据分析任务。此方案适用于人力资源分析、薪酬管理等数据密集型业务,显著提升效率并降低成本。
1087 8
|
8天前
|
存储 分布式计算 大数据
基于阿里云大数据平台的实时数据湖构建与数据分析实战
在大数据时代,数据湖作为集中存储和处理海量数据的架构,成为企业数据管理的核心。阿里云提供包括MaxCompute、DataWorks、E-MapReduce等在内的完整大数据平台,支持从数据采集、存储、处理到分析的全流程。本文通过电商平台案例,展示如何基于阿里云构建实时数据湖,实现数据价值挖掘。平台优势包括全托管服务、高扩展性、丰富的生态集成和强大的数据分析工具。
|
11天前
|
SQL 供应链 数据可视化
这可能是最适合探索式数据分析的工具
SPL(Structured Process Language)是一款结合了强大计算能力和灵活交互性的数据分析工具,特别适合探索式数据分析。它不仅支持分步执行和实时查看每步结果,还提供了丰富的表格数据计算类库,简化复杂运算。与Excel相比,SPL在处理复杂逻辑时更加简洁高效;相较于SQL和Python,SPL具备更好的交互性和更直观的操作体验。通过SPL的XLL插件,用户可以在Excel环境中直接使用SPL的强大功能,充分发挥两者优势。SPL开源免费,是探索式数据分析的理想选择。
|
26天前
|
监控 数据可视化 搜索推荐
如何通过数据分析优化营销流程?
在当今竞争激烈的市场中,企业需构建高效的营销流程以整合资源、提升效率并实现业务增长。本文从目标设定、渠道选择、内容创作、数据分析及团队协作工具等方面详细探讨了如何优化营销流程,并指出了常见问题及改进方向。通过明确目标、精准选择渠道、创作高价值内容、用数据驱动决策以及提升团队协作效率,企业能够在激烈的市场竞争中脱颖而出,实现持续增长。
|
3月前
|
人工智能 自然语言处理 Java
FastExcel:开源的 JAVA 解析 Excel 工具,集成 AI 通过自然语言处理 Excel 文件,完全兼容 EasyExcel
FastExcel 是一款基于 Java 的高性能 Excel 处理工具,专注于优化大规模数据处理,提供简洁易用的 API 和流式操作能力,支持从 EasyExcel 无缝迁移。
343 9
FastExcel:开源的 JAVA 解析 Excel 工具,集成 AI 通过自然语言处理 Excel 文件,完全兼容 EasyExcel
|
17天前
|
机器学习/深度学习 存储 数据可视化
这份Excel+Python飞速搞定数据分析手册,简直可以让Excel飞起来
本书介绍了如何将Python与Excel结合使用,以提升数据分析和处理效率。内容涵盖Python入门、pandas库的使用、通过Python包操作Excel文件以及使用xlwings对Excel进行编程。书中详细讲解了Anaconda、Visual Studio Code和Jupyter笔记本等开发工具,并探讨了NumPy、DataFrame和Series等数据结构的应用。此外,还介绍了多个Python包(如OpenPyXL、XlsxWriter等)用于在无需安装Excel的情况下读写Excel文件,帮助用户实现自动化任务和数据处理。
|
3月前
|
人工智能 自然语言处理 JavaScript
Univer:开源全栈 AI 办公工具,支持 Word、Excel、PPT 等文档处理和多人实时协作
Univer 是一款开源的 AI 办公工具,支持 Word、Excel 等文档处理的全栈解决方案。它具有强大的功能、高度的可扩展性和跨平台兼容性,适用于个人和企业用户,能够显著提高工作效率。
237 8
Univer:开源全栈 AI 办公工具,支持 Word、Excel、PPT 等文档处理和多人实时协作
|
4月前
|
数据挖掘 关系型数据库 Serverless
利用数据分析工具评估特定业务场景下扩缩容操作对性能的影响
通过以上数据分析工具的运用,可以深入挖掘数据背后的信息,准确评估特定业务场景下扩缩容操作对 PolarDB Serverless 性能的影响。同时,这些分析结果还可以为后续的优化和决策提供有力的支持,确保业务系统在不断变化的环境中保持良好的性能表现。
105 48

热门文章

最新文章