torch中 参数的梯度值赋值给新的变量,并且要求这个变量的值不会随着梯度清零而变零

简介: 可以使用 detach() 方法来将参数的梯度值赋值给一个新的变量,并且确保这个变量的值不会随着梯度清零而变为零。

可以使用 detach() 方法来将参数的梯度值赋值给一个新的变量,并且确保这个变量的值不会随着梯度清零而变为零。示例如下:

import torch
# 定义网络和输入
net = YourNetwork()
input = torch.randn(batch_size, input_size)
# 前向传播和计算损失
output = net(input)
loss = calculate_loss(output)
# 计算梯度并将其分配给一个新的变量
grads = torch.autograd.grad(loss, net.parameters(), retain_graph=True)
grad_vars = [v.detach() for v in grads]
# 清空梯度
net.zero_grad()
# 在后续使用 grad_vars 计算梯度时,grad_vars 的值不会被修改

在这里,我们首先使用 torch.autograd.grad() 方法计算出每个参数的梯度,并将这些梯度赋值给一个列表 grads 中。然后,通过循环遍历这个列表,并将每个梯度张量通过 detach() 方法创建出一个新的张量 grad_vars,这个新的张量与原来的梯度张量拥有相同的数值,但是它不再与计算图中的其他节点相连。因此,在后续使用这个新的张量计算梯度时,它的值不会受到原来的梯度张量被清零的影响。

相关文章
|
PyTorch 算法框架/工具
如何查看一个变量是否有要求计算梯度
在 PyTorch 中,可以通过查看张量的 requires_grad 属性来确定该变量是否要求计算梯度。具体来说,对于一个张量 x,可以通过访问 x.requires_grad 属性来获取它的梯度计算标志。
536 0
|
3月前
|
TensorFlow 算法框架/工具
创建变量tensor
【8月更文挑战第13天】 创建变量tensor。
27 1
|
6月前
|
SQL 关系型数据库 MySQL
7. 数值函数
7. 数值函数
定义求x的n次幂的函数,并返回计算结果
定义求x的n次幂的函数,并返回计算结果
|
6月前
|
机器学习/深度学习 PyTorch 算法框架/工具
pytorch中非标量调用backward()的时候为什么要先进行sum操作
在《动手学深度学习》第二版教程中,当y为非标量的时候,调用backward()函数时,为什么先要求和呢(即y.sum().backward()),估计很多读者有点懵,今天小编给大家说说我的理解。
379 3
|
6月前
对调 2个变量的值若干种方式
对调 2个变量的值若干种方式
38 0
|
Serverless
编写函数计算多项式的值
编写函数计算多项式的值
|
存储 算法
输出函数f(a,b)=2×a2+b2的最小的100个函数值及相应的两个参数的值
输出函数f(a,b)=2×a2+b2的最小的100个函数值及相应的两个参数的值
98 0
torch 如何在迭代训练中,只计算参数梯度,不更新参数。并且将参数的梯度保存到列表,这个列表的值不随着梯度清零而跟着变为零
在使用 torch.autograd.backward() 计算梯度后,可以通过设置参数的 requires_grad 属性为 False 来阻止参数更新。同时,通过将计算出的梯度值放入一个列表中来保存,这个列表的值不会随着梯度清零而清零
714 0