【大数据开发运维解决方案】Sqoop增量同步Oracle数据到hive:merge-key再次详解

本文涉及的产品
云原生大数据计算服务MaxCompute,500CU*H 100GB 3个月
云原生大数据计算服务 MaxCompute,5000CU*H 100GB 3个月
简介: 这篇文章是基于上面连接的文章继续做的拓展,上篇文章结尾说了如果一个表很大。我第一次初始化一部分最新的数据到hive表,如果没初始化进来的历史数据今天发生了变更,那merge-key的增量方式会不会报错呢?之所以会提出这个问题,是因为笔者真的有这个测试需求,接下来先对oracle端的库表数据做下修改,来模拟这种场景。

前言

对于sqoop增量同步Oracle数据到hive的命令参数以及如何定制自动增量job的测试已经再前面几篇文章详细测试过了,这篇文章是基于上面连接的文章继续做的拓展,上篇文章结尾说了如果一个表很大。我第一次初始化一部分最新的数据到hive表,如果没初始化进来的历史数据今天发生了变更,那merge-key的增量方式会不会报错呢?之所以会提出这个问题,是因为笔者真的有这个测试需求,接下来先对oracle端的库表数据做下修改,来模拟这种场景。


一、先插入一条数据

当前时间为:

SQL> select sysdate from dual;

SYSDATE
-------------------
2019-03-25 18:20:26

为了模拟我是有一部分历史数据没有导入到hive表,我这里先给oracle表插入一条历史数据:

SQL> select * from inr_job;

     EMPNO ENAME      JOB           SAL ETLTIME
---------- ---------- --------- ---------- -------------------
     1 er          CLERK           800 2019-03-22 17:24:42
     2 ALLEN      SALESMAN          1600 2019-03-22 17:24:42
     3 WARD       SALESMAN          1250 2019-03-22 17:24:42
     4 JONES      MANAGER          2975 2019-03-22 17:24:42
     5 MARTIN     SALESMAN          1250 2019-03-22 17:24:42
     6 zhao       DBA          1000 2019-03-22 17:24:42
     7 yan          BI           100 2019-03-22 17:24:42
     8 dong       JAVA           400 2019-03-22 17:24:42

8 rows selected.


SQL> insert into inr_job values(9,'test','test',200,sysdate-20);

1 row created.

SQL> commit;

Commit complete.

SQL> select * from inr_job;

     EMPNO ENAME      JOB           SAL ETLTIME
---------- ---------- --------- ---------- -------------------
     1 er          CLERK           800 2019-03-22 17:24:42
     2 ALLEN      SALESMAN          1600 2019-03-22 17:24:42
     3 WARD       SALESMAN          1250 2019-03-22 17:24:42
     4 JONES      MANAGER          2975 2019-03-22 17:24:42
     5 MARTIN     SALESMAN          1250 2019-03-22 17:24:42
     6 zhao       DBA          1000 2019-03-22 17:24:42
     7 yan          BI           100 2019-03-22 17:24:42
     8 dong       JAVA           400 2019-03-22 17:24:42
     9 test       test           200 2019-03-05 18:53:23--模仿没初始化到hive表的his数据

9 rows selected.

二、更新历史数据

接下来手动更新一下这个历史数据

SQL> update inr_job set sal=999,etltime=sysdate where empno=9;

1 row updated.

SQL> commit;

Commit complete.

查询一下表数据

SQL> select * from inr_job;

     EMPNO ENAME      JOB           SAL ETLTIME
---------- ---------- --------- ---------- -------------------
     1 er          CLERK           800 2019-03-22 17:24:42
     2 ALLEN      SALESMAN          1600 2019-03-22 17:24:42
     3 WARD       SALESMAN          1250 2019-03-22 17:24:42
     4 JONES      MANAGER          2975 2019-03-22 17:24:42
     5 MARTIN     SALESMAN          1250 2019-03-22 17:24:42
     6 zhao       DBA          1000 2019-03-22 17:24:42
     7 yan          BI           100 2019-03-22 17:24:42
     8 dong       JAVA           400 2019-03-22 17:24:42
     9 test       test           999 2019-03-25 18:54:39

9 rows selected.

现在数据发生了变动,然后去执行一下增量脚本:

[root@hadoop hadoop]# sqoop job --exec auto_job
Warning: /hadoop/sqoop/../accumulo does not exist! Accumulo imports will fail.
Please set $ACCUMULO_HOME to the root of your Accumulo installation.
19/03/25 18:55:49 INFO sqoop.Sqoop: Running Sqoop version: 1.4.7
SLF4J: Class path contains multiple SLF4J bindings.
SLF4J: Found binding in [jar:file:/hadoop/share/hadoop/common/lib/slf4j-log4j12-1.7.10.jar!/org/slf4j/impl/StaticLoggerBinder.class]
SLF4J: Found binding in [jar:file:/hadoop/hbase/lib/slf4j-log4j12-1.7.10.jar!/org/slf4j/impl/StaticLoggerBinder.class]
SLF4J: Found binding in [jar:file:/hadoop/hive/lib/log4j-slf4j-impl-2.6.2.jar!/org/slf4j/impl/StaticLoggerBinder.class]
SLF4J: See http://www.slf4j.org/codes.html#multiple_bindings for an explanation.
SLF4J: Actual binding is of type [org.slf4j.impl.Log4jLoggerFactory]
19/03/25 18:55:51 INFO oracle.OraOopManagerFactory: Data Connector for Oracle and Hadoop is disabled.
19/03/25 18:55:51 INFO manager.SqlManager: Using default fetchSize of 1000
19/03/25 18:55:51 INFO tool.CodeGenTool: Beginning code generation
19/03/25 18:55:52 INFO manager.OracleManager: Time zone has been set to GMT
19/03/25 18:55:52 INFO manager.SqlManager: Executing SQL statement: SELECT t.* FROM INR_JOB t WHERE 1=0
19/03/25 18:55:52 INFO orm.CompilationManager: HADOOP_MAPRED_HOME is /hadoop
Note: /tmp/sqoop-root/compile/f64e34273a58459369885b96fe46a1ad/INR_JOB.java uses or overrides a deprecated API.
Note: Recompile with -Xlint:deprecation for details.
19/03/25 18:55:56 INFO orm.CompilationManager: Writing jar file: /tmp/sqoop-root/compile/f64e34273a58459369885b96fe46a1ad/INR_JOB.jar
19/03/25 18:55:56 INFO manager.OracleManager: Time zone has been set to GMT
19/03/25 18:55:56 INFO manager.SqlManager: Executing SQL statement: SELECT t.* FROM INR_JOB t WHERE 1=0
19/03/25 18:55:56 INFO tool.ImportTool: Incremental import based on column ETLTIME
19/03/25 18:55:56 INFO tool.ImportTool: Lower bound value: TO_TIMESTAMP('2019-03-25 18:50:07.0', 'YYYY-MM-DD HH24:MI:SS.FF')
19/03/25 18:55:56 INFO tool.ImportTool: Upper bound value: TO_TIMESTAMP('2019-03-25 18:55:56.0', 'YYYY-MM-DD HH24:MI:SS.FF')
19/03/25 18:55:56 INFO manager.OracleManager: Time zone has been set to GMT
19/03/25 18:55:56 INFO mapreduce.ImportJobBase: Beginning import of INR_JOB
19/03/25 18:55:56 INFO Configuration.deprecation: mapred.jar is deprecated. Instead, use mapreduce.job.jar
19/03/25 18:55:56 INFO manager.OracleManager: Time zone has been set to GMT
19/03/25 18:55:56 INFO Configuration.deprecation: mapred.map.tasks is deprecated. Instead, use mapreduce.job.maps
19/03/25 18:55:56 INFO client.RMProxy: Connecting to ResourceManager at /192.168.1.66:8032
19/03/25 18:55:59 INFO db.DBInputFormat: Using read commited transaction isolation
19/03/25 18:55:59 INFO mapreduce.JobSubmitter: number of splits:1
19/03/25 18:56:00 INFO mapreduce.JobSubmitter: Submitting tokens for job: job_1553503985304_0013
19/03/25 18:56:00 INFO impl.YarnClientImpl: Submitted application application_1553503985304_0013
19/03/25 18:56:00 INFO mapreduce.Job: The url to track the job: http://hadoop:8088/proxy/application_1553503985304_0013/
19/03/25 18:56:00 INFO mapreduce.Job: Running job: job_1553503985304_0013
19/03/25 18:56:10 INFO mapreduce.Job: Job job_1553503985304_0013 running in uber mode : false
19/03/25 18:56:10 INFO mapreduce.Job:  map 0% reduce 0%
19/03/25 18:56:19 INFO mapreduce.Job:  map 100% reduce 0%
19/03/25 18:56:20 INFO mapreduce.Job: Job job_1553503985304_0013 completed successfully
19/03/25 18:56:20 INFO mapreduce.Job: Counters: 30
    File System Counters
        FILE: Number of bytes read=0
        FILE: Number of bytes written=144777
        FILE: Number of read operations=0
        FILE: Number of large read operations=0
        FILE: Number of write operations=0
        HDFS: Number of bytes read=87
        HDFS: Number of bytes written=38
        HDFS: Number of read operations=4
        HDFS: Number of large read operations=0
        HDFS: Number of write operations=2
    Job Counters 
        Launched map tasks=1
        Other local map tasks=1
        Total time spent by all maps in occupied slots (ms)=5870
        Total time spent by all reduces in occupied slots (ms)=0
        Total time spent by all map tasks (ms)=5870
        Total vcore-milliseconds taken by all map tasks=5870
        Total megabyte-milliseconds taken by all map tasks=6010880
    Map-Reduce Framework
        Map input records=1
        Map output records=1
        Input split bytes=87
        Spilled Records=0
        Failed Shuffles=0
        Merged Map outputs=0
        GC time elapsed (ms)=100
        CPU time spent (ms)=3220
        Physical memory (bytes) snapshot=189059072
        Virtual memory (bytes) snapshot=2147303424
        Total committed heap usage (bytes)=102236160
    File Input Format Counters 
        Bytes Read=0
    File Output Format Counters 
        Bytes Written=38
19/03/25 18:56:20 INFO mapreduce.ImportJobBase: Transferred 38 bytes in 23.7426 seconds (1.6005 bytes/sec)
19/03/25 18:56:20 INFO mapreduce.ImportJobBase: Retrieved 1 records.
19/03/25 18:56:20 INFO tool.ImportTool: Final destination exists, will run merge job.
19/03/25 18:56:20 INFO Configuration.deprecation: mapred.output.key.class is deprecated. Instead, use mapreduce.job.output.key.class
19/03/25 18:56:20 INFO client.RMProxy: Connecting to ResourceManager at /192.168.1.66:8032
19/03/25 18:56:22 INFO input.FileInputFormat: Total input paths to process : 2
19/03/25 18:56:23 INFO mapreduce.JobSubmitter: number of splits:2
19/03/25 18:56:23 INFO mapreduce.JobSubmitter: Submitting tokens for job: job_1553503985304_0014
19/03/25 18:56:23 INFO impl.YarnClientImpl: Submitted application application_1553503985304_0014
19/03/25 18:56:23 INFO mapreduce.Job: The url to track the job: http://hadoop:8088/proxy/application_1553503985304_0014/
19/03/25 18:56:23 INFO mapreduce.Job: Running job: job_1553503985304_0014
19/03/25 18:56:37 INFO mapreduce.Job: Job job_1553503985304_0014 running in uber mode : false
19/03/25 18:56:37 INFO mapreduce.Job:  map 0% reduce 0%
19/03/25 18:56:46 INFO mapreduce.Job:  map 100% reduce 0%
19/03/25 18:56:56 INFO mapreduce.Job:  map 100% reduce 100%
19/03/25 18:56:57 INFO mapreduce.Job: Job job_1553503985304_0014 completed successfully
19/03/25 18:56:57 INFO mapreduce.Job: Counters: 49
    File System Counters
        FILE: Number of bytes read=614
        FILE: Number of bytes written=435819
        FILE: Number of read operations=0
        FILE: Number of large read operations=0
        FILE: Number of write operations=0
        HDFS: Number of bytes read=657
        HDFS: Number of bytes written=361
        HDFS: Number of read operations=9
        HDFS: Number of large read operations=0
        HDFS: Number of write operations=2
    Job Counters 
        Launched map tasks=2
        Launched reduce tasks=1
        Data-local map tasks=2
        Total time spent by all maps in occupied slots (ms)=11103
        Total time spent by all reduces in occupied slots (ms)=7376
        Total time spent by all map tasks (ms)=11103
        Total time spent by all reduce tasks (ms)=7376
        Total vcore-milliseconds taken by all map tasks=11103
        Total vcore-milliseconds taken by all reduce tasks=7376
        Total megabyte-milliseconds taken by all map tasks=11369472
        Total megabyte-milliseconds taken by all reduce tasks=7553024
    Map-Reduce Framework
        Map input records=9
        Map output records=9
        Map output bytes=590
        Map output materialized bytes=620
        Input split bytes=296
        Combine input records=0
        Combine output records=0
        Reduce input groups=9
        Reduce shuffle bytes=620
        Reduce input records=9
        Reduce output records=9
        Spilled Records=18
        Shuffled Maps =2
        Failed Shuffles=0
        Merged Map outputs=2
        GC time elapsed (ms)=263
        CPU time spent (ms)=3980
        Physical memory (bytes) snapshot=670138368
        Virtual memory (bytes) snapshot=6394978304
        Total committed heap usage (bytes)=508559360
    Shuffle Errors
        BAD_ID=0
        CONNECTION=0
        IO_ERROR=0
        WRONG_LENGTH=0
        WRONG_MAP=0
        WRONG_REDUCE=0
    File Input Format Counters 
        Bytes Read=361
    File Output Format Counters 
        Bytes Written=361
19/03/25 18:56:57 INFO tool.ImportTool: Saving incremental import state to the metastore
19/03/25 18:56:57 INFO tool.ImportTool: Updated data for job: auto_job

发现没有报错唉,然后去看看hive表:

hive> select * from inr_job;
OK
1    er    CLERK    800.0    2019-03-22 17:24:42.0
2    ALLEN    SALESMAN    1600.0    2019-03-22 17:24:42.0
3    WARD    SALESMAN    1250.0    2019-03-22 17:24:42.0
4    JONES    MANAGER    2975.0    2019-03-22 17:24:42.0
5    MARTIN    SALESMAN    1250.0    2019-03-22 17:24:42.0
6    zhao    DBA    1000.0    2019-03-22 17:24:42.0
7    yan    BI    100.0    2019-03-22 17:24:42.0
8    dong    JAVA    400.0    2019-03-22 17:24:42.0
9    test    test    999.0    2019-03-25 18:54:39.0
Time taken: 0.336 seconds, Fetched: 9 row(s)

没初始化进来的历史数据在近期变动之后,如果符合增量条件的话,也会append进来并不会报错,完全符合笔者需求,其实看看merge-key参数大致原理,也是知道这样是可行的,毕竟是通过主键和最后修改时间去做增量合并。


总结

上面是博主对merge-key做的再一次深入测试,因为实际工作中的确会用到,那就自己研究清楚了!

相关实践学习
基于MaxCompute的热门话题分析
本实验围绕社交用户发布的文章做了详尽的分析,通过分析能得到用户群体年龄分布,性别分布,地理位置分布,以及热门话题的热度。
SaaS 模式云数据仓库必修课
本课程由阿里云开发者社区和阿里云大数据团队共同出品,是SaaS模式云原生数据仓库领导者MaxCompute核心课程。本课程由阿里云资深产品和技术专家们从概念到方法,从场景到实践,体系化的将阿里巴巴飞天大数据平台10多年的经过验证的方法与实践深入浅出的讲给开发者们。帮助大数据开发者快速了解并掌握SaaS模式的云原生的数据仓库,助力开发者学习了解先进的技术栈,并能在实际业务中敏捷的进行大数据分析,赋能企业业务。 通过本课程可以了解SaaS模式云原生数据仓库领导者MaxCompute核心功能及典型适用场景,可应用MaxCompute实现数仓搭建,快速进行大数据分析。适合大数据工程师、大数据分析师 大量数据需要处理、存储和管理,需要搭建数据仓库?学它! 没有足够人员和经验来运维大数据平台,不想自建IDC买机器,需要免运维的大数据平台?会SQL就等于会大数据?学它! 想知道大数据用得对不对,想用更少的钱得到持续演进的数仓能力?获得极致弹性的计算资源和更好的性能,以及持续保护数据安全的生产环境?学它! 想要获得灵活的分析能力,快速洞察数据规律特征?想要兼得数据湖的灵活性与数据仓库的成长性?学它! 出品人:阿里云大数据产品及研发团队专家 产品 MaxCompute 官网 https://www.aliyun.com/product/odps 
相关文章
|
4天前
|
Prometheus 运维 监控
Prometheus+Grafana+NodeExporter:构建出色的Linux监控解决方案,让你的运维更轻松
本文介绍如何使用 Prometheus + Grafana + Node Exporter 搭建 Linux 主机监控系统。Prometheus 负责收集和存储指标数据,Grafana 用于可视化展示,Node Exporter 则采集主机的性能数据。通过 Docker 容器化部署,简化安装配置过程。完成安装后,配置 Prometheus 抓取节点数据,并在 Grafana 中添加数据源及导入仪表盘模板,实现对 Linux 主机的全面监控。整个过程简单易行,帮助运维人员轻松掌握系统状态。
44 3
|
23天前
|
机器学习/深度学习 人工智能 运维
智能化运维:AI与大数据在IT运维中的应用探索####
本文旨在探讨人工智能(AI)与大数据分析技术如何革新传统IT运维模式,提升运维效率与服务质量。通过具体案例分析,揭示AI算法在故障预测、异常检测及自动化修复等方面的实际应用成效,同时阐述大数据如何助力实现精准运维管理,降低运营成本,提升用户体验。文章还将简要讨论实施智能化运维面临的挑战与未来发展趋势,为IT管理者提供决策参考。 ####
|
28天前
|
运维 监控 安全
云计算环境下的运维挑战与解决方案
本文探讨了云计算环境中运维面临的主要挑战,包括资源管理、自动化部署、安全性问题等,并提出了相应的解决策略。通过案例分析和最佳实践,为云环境下的运维工作提供了指导和参考。
35 1
|
1月前
|
运维 监控 关系型数据库
数据库管理中的自动化运维:挑战与解决方案
数据库管理中的自动化运维:挑战与解决方案
|
1月前
|
存储 运维 安全
Spring运维之boot项目多环境(yaml 多文件 proerties)及分组管理与开发控制
通过以上措施,可以保证Spring Boot项目的配置管理在专业水准上,并且易于维护和管理,符合搜索引擎收录标准。
44 2
|
2月前
|
机器学习/深度学习 人工智能 运维
智能运维:大数据与AI的融合之道###
【10月更文挑战第20天】 运维领域正经历一场静悄悄的变革,大数据与人工智能的深度融合正重塑着传统的运维模式。本文探讨了智能运维如何借助大数据分析和机器学习算法,实现从被动响应到主动预防的转变,提升系统稳定性和效率的同时,降低了运维成本。通过实例解析,揭示智能运维在现代IT架构中的核心价值,为读者提供一份关于未来运维趋势的深刻洞察。 ###
122 10
|
1月前
|
运维 Serverless 数据处理
Serverless架构通过提供更快的研发交付速度、降低成本、简化运维、优化资源利用、提供自动扩展能力、支持实时数据处理和快速原型开发等优势,为图像处理等计算密集型应用提供了一个高效、灵活且成本效益高的解决方案。
Serverless架构通过提供更快的研发交付速度、降低成本、简化运维、优化资源利用、提供自动扩展能力、支持实时数据处理和快速原型开发等优势,为图像处理等计算密集型应用提供了一个高效、灵活且成本效益高的解决方案。
99 1
|
2月前
|
运维 Serverless 数据处理
Serverless架构通过提供更快的研发交付速度、降低成本、简化运维、优化资源利用、提供自动扩展能力、支持实时数据处理和快速原型开发等优势,为图像处理等计算密集型应用提供了一个高效、灵活且成本效益高的解决方案。
Serverless架构通过提供更快的研发交付速度、降低成本、简化运维、优化资源利用、提供自动扩展能力、支持实时数据处理和快速原型开发等优势,为图像处理等计算密集型应用提供了一个高效、灵活且成本效益高的解决方案。
63 3
|
2月前
|
运维 Java Linux
【运维基础知识】掌握VI编辑器:提升你的Java开发效率
本文详细介绍了VI编辑器的常用命令,包括模式切换、文本编辑、搜索替换及退出操作,帮助Java开发者提高在Linux环境下的编码效率。掌握这些命令,将使你在开发过程中更加得心应手。
42 2
|
2月前
|
运维 监控 安全
构建高效运维体系:从监控到自动化的全面指南在当今数字化时代,运维作为保障系统稳定性和效率的重要环节,其重要性不言而喻。本文将深入探讨如何构建一个高效的运维体系,从监控系统的搭建到自动化运维的实施,旨在为读者提供一套完整的解决方案。
本文详细介绍了高效运维体系的构建过程,包括监控系统的选择与部署、日志分析的方法、性能优化的策略以及自动化运维工具的应用。通过对这些关键环节的深入剖析,帮助运维人员提升系统的可靠性和响应速度,降低人工干预成本,实现业务的快速发展和稳定运行。

热门文章

最新文章

推荐镜像

更多