CPOFDM-16QAM性能仿真,输出接收端的星座图

简介: CPOFDM-16QAM性能仿真,输出接收端的星座图

1.算法描述

    CP-OFDM(Cyclic Prefix Orthogonal Frequency Division Multiplexing,循环前缀正交频分复用)通信系统采用多个正交子载波(Orthogonalsub-Carrier)并行传输数据,可以高效传输数据并且有效对抗频率选择性衰落信道带来的影响。但是在数据传输过程中,对子载波的正交性有严苛的要求,所以CP-OFDM系统对载波及采样时钟的频率偏差(即频偏)非常敏感,必须通过频偏估计与纠正技术,使得频率偏差处于接收机可容忍范围内,从而保证数据的正确传输。
   CP-OFDM 技术利用多个平行窄带子载波来传输信息,而不使用单个宽带载波。该技术定义充分,已在 4G LTE 下行链路和Wi-Fi通信标准成功实施,因此也适合用于 5G NR 设计。

   不过,5G NR 上行链路还提供了一种不同的波形格式,这种波形格式类似 4G LTE 上行链路使用的波形模式⸺离散傅立叶变换扩频正交频分复用(DFT-S-OFDM)波形。DFT-S-OFDM 波形是一种 4G 采用的波形,结合了循环前缀正交频分复用和低峰均比(PAPR)的优点。DFTS-OFDM 波形对上行链路有帮助,对于高功率的 2 级功率应用或者当用户设备位于基站蜂窝的边缘位置,远离信号塔时,DFT-S-OFDM 可能是首选波形。

   在灵活性上,5G NR 提供的子载波间隔方案还超越了 LET 提供的固定 15 kHz 子载波间隔。5G NR 提供的子载波间隔包括 FR2,最大间隔达到 240 kHz。灵活的载波间隔可用于适当支持 5G NR 所需的多元化频带、频谱类型及部署模式。

    DFT-S-OFDM 非常类似于 LTE 上行链路使用的单频分复用接入(SCFDMA),CP-OFDM 非常类似于 LTE 下行链路使用的正交频分复用接入(OFDMA)。3GPP 之所以选择 CP-OFDM,原因如下:

CP-OFDM 能够面向复杂程度较低的接收器延展。

在一些最重要的 5G 性能指标上(例如:与多天线技术的兼容性),CP-OFDM 排名最高。

CP-OFDM 的时域控制良好,这一点对于低延时关键应用和时分双工(TDD)部署具有重要意义。``

image.png

2.仿真效果预览
matlab2022a仿真结果如下:

image.png
image.png

3.MATLAB核心程序

clear;
close all;
warning off;
addpath(genpath(pwd));
 
 
v1 = 1;
v2 = 3;
nBit = 1024*2;
lSymbol = 4;
nChannel = 4;
baseFreq = 100; % 1Hz
tSymbol = nChannel/baseFreq; % time for one symbol
nSymbol = nBit/(nChannel*lSymbol);
bitSequence = bit_generate(nBit);
 
mapQAM = mapping_16QAM(v1,v2);
 
for k = 1:nBit/lSymbol
    rInd = fix((k-1)/nChannel) +1;
    cInd = k-(rInd-1)*nChannel;
    fr = (k-1)*lSymbol +1;
    bSymbol(rInd,cInd).bit = bitSequence(fr:fr+lSymbol-1);  
end
 
fBase = 100; %100Hz for base frequence
fFirst = 200; %500Hz for first channel
Fs = 1024;
rTg = 1/8; %Ratio of guard 
Tsym = 1/fBase;
Tg = Tsym*rTg;
Tsig = nSymbol*(Tsym+Tg);
 
bSymbol = generateSymbolWave(bSymbol,mapQAM,fBase,fFirst,rTg,Fs);
 
sOFDM = [];
for k=1:nSymbol
    tmpSignal = 0;
    for j= 1:nChannel
        tmpSignal = tmpSignal + bSymbol(k,j).symbol;
    end
    sOFDM = [sOFDM tmpSignal];
end
相关文章
|
7月前
|
算法
m基于OFDM+QPSK和LDPC编译码以及MMSE信道估计的无线图像传输matlab仿真,输出误码率,并用图片进行测试
MATLAB2022a仿真实现了无线图像传输的算法,包括OFDM、QPSK调制、LDPC编码和MMSE信道估计。OFDM抗频率选择性衰落,QPSK用相位表示二进制,LDPC码用于前向纠错,MMSE估计信道响应。算法流程涉及编码、调制、信道估计、均衡、解码和图像重建。MATLAB代码展示了从串行数据到OFDM信号的生成,经过信道模型、噪声添加,再到接收端的信道估计和解码过程,最终计算误码率。
82 1
|
15天前
|
算法 数据安全/隐私保护 异构计算
基于FPGA的16QAM调制+软解调系统,包含testbench,高斯信道模块,误码率统计模块,可以设置不同SNR
本项目基于FPGA实现了16QAM基带通信系统,包括调制、信道仿真、解调及误码率统计模块。通过Vivado2019.2仿真,设置不同SNR(如8dB、12dB),验证了软解调相较于传统16QAM系统的优越性,误码率显著降低。系统采用Verilog语言编写,详细介绍了16QAM软解调的原理及实现步骤,适用于高性能数据传输场景。
114 69
|
26天前
|
算法 异构计算
基于FPGA的4ASK调制解调系统,包含testbench,高斯信道模块,误码率统计模块,可以设置不同SNR
本文介绍了基于FPGA的4-ASK调制解调系统的算法仿真效果、理论基础及Verilog核心程序。仿真在Vivado2019.2环境下进行,分别测试了SNR为20dB、15dB、10dB时的性能。理论部分概述了4-ASK的工作原理,包括调制、解调过程及其数学模型。Verilog代码实现了4-ASK调制器、加性高斯白噪声(AWGN)信道模拟、解调器及误码率计算模块。
50 8
|
1月前
|
算法 物联网 异构计算
基于FPGA的4FSK调制解调系统,包含testbench,高斯信道模块,误码率统计模块,可以设置不同SNR
本文介绍了基于FPGA的4FSK调制解调系统的Verilog实现,包括高斯信道模块和误码率统计模块,支持不同SNR设置。系统在Vivado 2019.2上开发,展示了在不同SNR条件下的仿真结果。4FSK调制通过将输入数据转换为四个不同频率的信号来提高频带利用率和抗干扰能力,适用于无线通信和数据传输领域。文中还提供了核心Verilog代码,详细描述了调制、加噪声、解调及误码率计算的过程。
52 11
|
1月前
|
算法 数据安全/隐私保护 异构计算
基于FPGA的1024QAM基带通信系统,包含testbench,高斯信道模块,误码率统计模块,可以设置不同SNR
本文介绍了基于FPGA的1024QAM调制解调系统的仿真与实现。通过Vivado 2019.2进行仿真,分别在SNR=40dB和35dB下验证了算法效果,并将数据导入Matlab生成星座图。1024QAM调制将10比特映射到复数平面上的1024个星座点之一,适用于高数据传输速率的应用。系统包含数据接口、串并转换、星座映射、调制器、解调器等模块。Verilog核心程序实现了调制、加噪声信道和解调过程,并统计误码率。
45 1
|
2月前
|
算法 数据安全/隐私保护 异构计算
基于FPGA的64QAM基带通信系统,包含testbench,高斯信道模块,误码率统计模块,可以设置不同SNR
本文介绍了基于FPGA的64QAM调制解调通信系统的设计与实现,包括信号生成、调制、解调和误码率测试。系统在Vivado 2019.2中进行了仿真,通过设置不同SNR值(15、20、25)验证了系统的性能,并展示了相应的星座图。核心程序使用Verilog语言编写,加入了信道噪声模块和误码率统计功能,提升了仿真效率。
56 4
|
2月前
|
算法 数据安全/隐私保护 异构计算
基于FPGA的16QAM基带通信系统,包含testbench,高斯信道模块,误码率统计模块,可以设置不同SNR
本项目基于FPGA实现16QAM调制解调通信系统,使用Verilog语言编写,包括信道模块、误码率统计模块。通过设置不同SNR值(如8dB、12dB、16dB),仿真测试系统的误码性能。项目提供了完整的RTL结构图及操作视频,便于理解和操作。核心程序实现了信号的生成、调制、信道传输、解调及误码统计等功能。
56 3
|
1月前
|
算法 数据安全/隐私保护 异构计算
基于FPGA的256QAM基带通信系统,包含testbench,高斯信道模块,误码率统计模块,可以设置不同SNR
本文介绍了256QAM调制解调算法的仿真效果及理论基础。使用Vivado 2019.2进行仿真,分别在SNR为40dB、32dB和24dB下生成星座图,并导入Matlab进行分析。256QAM通过将8比特数据映射到复平面上的256个点,实现高效的数据传输。Verilog核心程序包括调制、信道噪声添加和解调模块,最终统计误码率。
39 0
|
3月前
|
算法 测试技术 开发工具
基于FPGA的QPSK调制解调系统,包含testbench,高斯信道模块,误码率统计模块,可以设置不同SNR
该系统在原有的QPSK调制解调基础上,新增了高斯信道和误码率统计模块,验证了不同SNR条件下的QPSK误码性能。系统包括数据生成、QPSK调制与解调等模块,使用Vivado 2019.2进行仿真,展示了SNR分别为15dB、10dB、5dB和1dB时的误码情况。系统采用Verilog语言实现,具有高效、可靠的特点。
62 3
|
3月前
|
算法 数据安全/隐私保护 异构计算
基于FPGA的2ASK调制解调系统,包含testbench,高斯信道模块,误码率统计模块,可以设置不同SNR
本项目基于Vivado 2019.2实现了2ASK调制解调系统,新增高斯信道及误码率统计模块,验证了不同SNR条件下的ASK误码表现。2ASK通过改变载波振幅传输二进制信号,其调制解调过程包括系统设计、Verilog编码、仿真测试及FPGA实现,需考虑实时性与并行性,并利用FPGA资源优化非线性操作。
81 0