数字货币现货期权期货交易所开发(详情版)丨数字货币现货期权期货交易所系统开发(稳定版)丨数字货币现货期权期货交易所源码平台

简介: What is a quantitative trading robot?  In essence,the trading robot is a software program that directly interacts with the financial exchange(usually uses API to obtain and interpret relevant information),and issues trading orders according to the interpretation of market data.These robots make th

  What is a quantitative trading robot?

  In essence,the trading robot is a software program that directly interacts with the financial exchange(usually uses API to obtain and interpret relevant information),and issues trading orders according to the interpretation of market data.These robots make these decisions by monitoring the market price trend and responding to a set of preset and programmed rules.Generally,a trading robot will analyze market behavior,such as trading volume,order,price and time.They can usually be programmed according to your own preferences.

  自动交易机器人在云服务器上24小时运行。初始化设置参数之后,机器人将按照策略进行自动交易。达到设定条件自动买入或者卖出,无须长时间盯盘。机器人内置多种交易策略,满足不同的类型。I35 system 7O98 development O7I8设置策略后,机器人将智能分配每次进单的条件,严格执行交易策略,交易补单策略,根据当前行情,云大数据实时调整。

  import os

  import pandas as pd

  import tushare as ts

  import numpy as np

  from pathlib import Path

  import matplotlib.pyplot as plt

  import mplfinance as mpf

  import matplotlib as mpl

  from cycler import cycler#用于定制线条颜色

  import time

  #分红

  def dividend(ts_code):

  df=pro.dividend(ts_code=ts_code)

  df.to_csv('dividend.csv',encoding='utf_8_sig')

  #画市柱状图

  def draw_finance(ts_codes,begin_count,end_count=-1):

  df=load_data(ts_codes)

  fig=plt.figure()

  ax=fig.add_subplot(111)

  opens=df['open'].values[begin_count:end_count]

  closes=df['close'].values[begin_count:end_count]

  highs=df['high'].values[begin_count:end_count]

  lows=df['low'].values[begin_count:end_count]

  dates=df['trade_date'].values[begin_count:end_count]

  vols=df['vol'].values[begin_count:end_count]

  data=[dates,opens,closes,highs,lows,vols]

  data=np.transpose(data)#矩阵转置

  df=pd.DataFrame(data,columns=['Date','Open','Close','High','Low','Volume'])

  df['Date']=pd.to_datetime(df['Date'])

  df.set_index(['Date'],inplace=True)

  #df.index.name='Date'

  #设置基本参数

  #type:绘制图形的类型,有candle,renko,ohlc,line等

  #此处选择candle,即K线图

  #mav(moving average):均线类型,此处设置7,30,60日线

  #volume:布尔类型,设置是否显示成交量,默认False

  #title:设置标题

  #y_label:设置纵轴主标题

  #y_label_lower:设置成交量图一栏的标题

  #figratio:设置图形纵横比

  #figscale:设置图形尺寸(数值越大图像质量越高)

  kwargs=dict(

  type='candle',

  mav=(5,10,20),

  volume=True,

  title='nA_stock%s candle_line'%(ts_codes),

  ylabel='OHLC Candles',

  ylabel_lower='SharesnTraded Volume',

  figratio=(50,30),

  figscale=15)

  #设置marketcolors

  #up:设置K线线柱颜色,up意为收盘价大于等于开盘价

  #down:与up相反,这样设置与国内K线颜色标准相符

  #edge:K线线柱边缘颜色(i代表继承自up和down的颜色),下同。详见官方文档)

  #wick:灯芯(上下影线)颜色

  #volume:成交量直方图的颜色

  #inherit:是否继承,选填

  mc=mpf.make_marketcolors(

  up='red',

  down='green',

  edge='i',

  wick='i',

  volume='in',

  inherit=True)

  #设置图形风格

  #gridaxis:设置网格线位置

  #gridstyle:设置网格线线型

  #y_on_right:设置y轴位置是否在右

  s=mpf.make_mpf_style(

  gridaxis='both',

  gridstyle='-.',

  y_on_right=False,

  marketcolors=mc)

  #设置均线颜色,配色表可见下图

  #建议设置较深的颜色且与红色、绿色形成对比

  #此处设置七条均线的颜色,也可应用默认设置

  mpl.rcParams['axes.prop_cycle']=cycler(

  color=['dodgerblue','deeppink',

  'navy','teal','maroon','darkorange',

  'indigo'])

  #设置线宽

  mpl.rcParams['lines.linewidth']=.5

  #图形绘制

  #show_nontrading:是否显示非交易日,默认False

  #savefig:导出图片,填写文件名及后缀

  mpf.plot(df,

  **kwargs,

  style=s,

  show_nontrading=False,

  savefig='%s_begin%d_end%d'

  %(ts_codes,begin_count,end_count)+'.png')

  #candlestick2_ochl(ax,opens=opens,closes=closes,highs=highs,lows=lows,width=0.75,colorup='red',colordown='green')

  #plt.legend(loc='best')

  #plt.xticks(range(len(date)),date,rotation=30)

  #plt.grid(True)

  #plt.title(ts_codes)

  #plt.show

相关文章
|
算法 机器人 测试技术
(币安、ok、欧易)交易所行情机器人系统开发
(币安、ok、欧易)交易所行情机器人系统开发
|
NoSQL 关系型数据库 MySQL
数字货币永续合约/币币交易所系统开发(开发案例),币币交易所/永续合约交易所开发源码及体验版
Market analysis:Exchanges can also provide market charts and analysis tools for digital currencies,helping users understand market dynamics,trends,and price change
|
6月前
|
人工智能 供应链 安全
现货期权交易|秒合约系统开发技术方案
使用智能合约还可以保护和安全地与区块链和传统的业务主体的数据链接
|
区块链
现货期权期货秒合约系统丨现货期权期货秒合约系统开发(规则及详细)丨现货期权期货秒合约系统源码开发
  从技术视角来看,区块链已由初期的技术探索进入到平台化、组件化和集成化发展阶段。主要体现在:一是平台化推动形成城市链网。长安链、蜀信链和海河链等城市链已经纷纷出现,城市链互相联通后将形成城市链网,以支撑更大规模的应用场景。二是组件化推动形成组件服务网络
|
数据挖掘
借贷理财流动性挖矿开发详情丨借贷理财流动性挖矿系统开发(案例及源码)
 The"sharing"of the metauniverse ontology can be expressed in the form of standardization,which is the best order obtained by consensus within a certain range on the basis of scientific research and theoretical practice.The standards of the universe can be divided into five categories:basic,technolo
|
自然语言处理
现货期权期货交易所开发(多语言)丨现货期权期货交易所系统开发(海外版)丨现货期权期货交易所系统源码部署
 The contract trading system is a derivative product of digital assets.Users can gain gains from the rise/fall of the price of digital assets by judging the rise and fall and choosing to buy long or sell short contracts.The contract trading system uses the differential delivery mode.When the contrac
|
Serverless Python
现货期权交易所系统丨现货期权交易所系统开发(方案及详细)丨现货期权交易所源码功能及案例
 As a new information and network technology,blockchain uses encryption technology,distributed network and consensus mechanism to ensure that the information recorded by each node in the network is true and effective.Blockchain is constantly penetrating into all walks of life and has shown a good de
|
Serverless Python
现货期权交易所开发稳定版,现货期权交易所系统开发技术详情及案例,现货期权交易所源码部署
  The development technology of digital currency exchange is a decentralized consensus mechanism to maintain a complete,distributed and tamper-proof ledger database.It enables participants in the blockchain to achieve a unified ledger system without establishing trust relationships.
|
机器人 BI 数据库
现货期权合约交易所开发需求丨现货期权合约交易所系统开发(实现技术及代码)
 Quantitative trading refers to an investment method that uses modern statistics and mathematical methods to trade through computer technology.Quantitative trading selects a variety of"high probability"events that can achieve excess returns from massive historical data to formulate strategies,uses q
|
开发工具
defi/nft流动性质押挖矿分红开发正式版,defi/nft流动性质押挖矿分红系统开发(成熟案例及源码)
Liquidity mining usually requires pledge of loan vouchers or LP vouchers. That is to say, instead of pledging the original token to get the reward of liquidity mining, users need to pledge the original token in DeFi first, and then pledge the voucher to the specified contract to get the reward of li