基于PaddleClas2.2的奥特曼图像分类实战

简介: 基于PaddleClas2.2的奥特曼图像分类实战

项目数据集介绍

包含四类奥特曼,迪迦200张、杰克100张、赛文100张和泰罗奥特曼150张。

!!!数据集完全由我一张一张截图而来,切勿作为其他用途,仅供个人学习!!!

友情提示:数据集仅供学习和个人使用,如果被告我不负责(孩子怕极了)

├── aoteman  
│   ├── dijia  
│   │   ├── 001.jpg  
│   │   ├── 002.jpg  
│   │   ├── 003.jpg  
│   │   ├── ......  
│   │   ├── 198.jpg
│   │   ├── 199.jpg
│   │   └── 200.jpg
│   ├── jieke
│   │   ├── 001.jpg
│   │   ├── 002.jpg
│   │   ├── 003.jpg
│   │   ├── ......
│   │   ├── 098.jpg
│   │   ├── 099.jpg
│   │   └── 100.jpg
│   ├── saiwen
│   │   ├── 001.jpg
│   │   ├── 002.jpg
│   │   ├── 003.jpg
│   │   ├── ......
│   │   ├── 098.jpg
│   │   ├── 099.jpg
│   │   └── 100.jpg
│   ├── tailuo
│   │   ├── 001.jpg
│   │   ├── 002.jpg
│   │   ├── 003.jpg
│   │   ├── ......
│   │   ├── 148.jpg
│   │   ├── 149.jpg
│   │   └── 150.jpg


话不多说,开整!

!python3 -c "import paddle; print(paddle.__version__)"
2.1.0
# 解压数据集
!unzip -oq /home/aistudio/data/data101651/aoteman.zip
# 更清楚的看文件的结构
!tree
# 安装paddleclas以及相关三方包(好像studio自带的已经够用了,无需安装了)
!git clone https://gitee.com/paddlepaddle/PaddleClas.git -b release/2.2
# 我这里安装相关包时,花了30几分钟还有错误提示,不管他即可
#!pip install --upgrade -r PaddleClas/requirements.txt -i https://mirror.baidu.com/pypi/simple
Cloning into 'PaddleClas'...
remote: Enumerating objects: 538, done.[K
remote: Counting objects: 100% (538/538), done.[K
remote: Compressing objects: 100% (323/323), done.[K
remote: Total 15290 (delta 344), reused 349 (delta 210), pack-reused 14752[K
Receiving objects: 100% (15290/15290), 113.56 MiB | 12.55 MiB/s, done.
Resolving deltas: 100% (10236/10236), done.
Checking connectivity... done.
# 查看都安装上了没
!pip list package
# 忽略(垃圾)警告信息
# 在python中运行代码经常会遇到的情况是——代码可以正常运行但是会提示警告,有时特别讨厌。
# 那么如何来控制警告输出呢?其实很简单,python通过调用warnings模块中定义的warn()函数来发出警告。我们可以通过警告过滤器进行控制是否发出警告消息。
import warnings
warnings.filterwarnings("ignore")


数据处理

正常的代码逻辑:如下


1 读取数据

2 打乱数据

3 划分数据

4 数据预处理

(4数据预处理这个在paddleclas中进行处理了)

# 导入所需要的库
from sklearn.utils import shuffle
import os
import pandas as pd
import numpy as np
from PIL import Image
import paddle
import paddle.nn as nn
from paddle.io import Dataset
import paddle.vision.transforms as T
import paddle.nn.functional as F
from paddle.metric import Accuracy
import random
# -*- coding: utf-8 -*-
# 根据官方paddleclas的提示,我们需要把图像变为两个txt文件
# 我们总共是200+100+100+150=550张图片,按照经典的划分方式0.8:0.2
# train_list.txt(训练集,440张图)
# val_list.txt(验证集,110张图)
# 先把路径搞定 比如:dataset/dijia/001.png ,读取到并写入txt 
#                  dataset/jieke/001.png                 
#                  dataset/saiwen/001.png                
#                  dataset/tailuo/001.png  
dirpath = "aoteman"
# 先得到总的txt后续再进行划分,因为要划分出验证集,所以要先打乱,因为原本是有序的
def get_all_txt():
    all_list = []
    i = 0
    for root,dirs,files in os.walk(dirpath): # 分别代表根目录、文件夹、文件
        for file in files:
            i = i + 1 
            # 文件中每行格式: 图像相对路径      图像的label_id(注意:中间有空格)。              
            #                aoteman/dijia/001.png    0
            #                aoteman/jike/001.png     1
            #                aoteman/saiwen/001.png   2
            #                aoteman/tailuo/001.png   3
            if("dijia" in root):
                all_list.append(os.path.join(root,file)+" 0\n")
            if("jieke" in root):
                all_list.append(os.path.join(root,file)+" 1\n")
            if("saiwen" in root):
                all_list.append(os.path.join(root,file)+" 2\n")
            if("tailuo" in root):
                all_list.append(os.path.join(root,file)+" 3\n")
    allstr = ''.join(all_list)
    f = open('all_list.txt','w',encoding='utf-8')
    f.write(allstr)
    return all_list , i
all_list,all_lenth = get_all_txt()
print(all_lenth-1) # 有意者是预测的图片,得减去
550
# 我们总共是200+100+100+150=550张图片,按照经典的划分方式0.8:0.2
# train_list.txt(训练集,440张图)
# val_list.txt(验证集,110张图)
# 思路 : 先把数据打乱,然后按照比例划分数据集
random.shuffle(all_list)
random.shuffle(all_list)
train_size = int(all_lenth * 0.8)
train_list = all_list[:train_size]
val_list = all_list[train_size:]
print(len(train_list))
print(len(val_list))
440
110
# 运行cell,生成txt 
train_txt = ''.join(train_list)
f_train = open('train_list.txt','w',encoding='utf-8')
f_train.write(train_txt)
f_train.close()
print("train_list.txt 生成成功!")
train_list.txt 生成成功!
# 运行cell,生成txt
val_txt = ''.join(val_list)
f_val = open('val_list.txt','w',encoding='utf-8')
f_val.write(val_txt)
f_val.close()
print("val_list.txt 生成成功!")
val_list.txt 生成成功!
# 将图片移动到paddleclas下面的数据集里面
# 至于为什么现在移动,也是我的一点小技巧,防止之前移动的话,生成的txt的路径是全路径,反而需要去掉路径的一部分
!mv aoteman/ PaddleClas/dataset/
!mv all_list.txt PaddleClas/dataset/aoteman
!mv train_list.txt PaddleClas/dataset/aoteman
!mv val_list.txt PaddleClas/dataset/aoteman


采用paddleclas进行训练

数据集核实完搞定成功的前提下,可以准备更改原文档的参数进行实现自己的图片分类了!

#windows在cmd中进入PaddleClas根目录,执行此命令
%cd PaddleClas
!ls
/home/aistudio/PaddleClas
dataset  hubconf.py   MANIFEST.in    README_ch.md  requirements.txt
deploy   __init__.py  paddleclas.py  README_en.md  setup.py
docs   LICENSE      ppcls      README.md     tools


修改配置文件

主要是以下几点:分类数、图片总量、训练和验证的路径、图像尺寸、训练和预测的num_workers: 0才可以在aistudio跑通。


PaddleClas/ppcls/configs/quick_start/new_user/ShuffleNetV2_x0_25.yaml

# global configs
Global:
  checkpoints: null
  pretrained_model: null
  device: gpu
  output_dir: ./output/
  save_interval: 20
  eval_during_train: True
  eval_interval: 10
  epochs: 600
  print_batch_step: 10
  use_visualdl: True
  # used for static mode and model export
  image_shape: [3, 224, 224]
  save_inference_dir: ./inference
# model architecture
Arch:
  name: ShuffleNetV2_x0_25
  class_num: 4
# loss function config for traing/eval process
Loss:
  Train:
    - CELoss:
        weight: 1.0
  Eval:
    - CELoss:
        weight: 1.0
Optimizer:
  name: Momentum
  momentum: 0.9
  lr:
    name: Cosine
    learning_rate: 0.0125
    warmup_epoch: 5
  regularizer:
    name: 'L2'
    coeff: 0.00001
# data loader for train and eval
DataLoader:
  Train:
    dataset:
      name: ImageNetDataset
      image_root: ./dataset/
      cls_label_path: ./dataset/aoteman/train_list.txt
      transform_ops:
        - DecodeImage:
            to_rgb: True
            channel_first: False
        - ResizeImage:
            resize_short: 256
        - CropImage:
            size: 224
        - RandFlipImage:
            flip_code: 1
        - NormalizeImage:
            scale: 1.0/255.0
            mean: [0.485, 0.456, 0.406]
            std: [0.229, 0.224, 0.225]
            order: ''
    sampler:
      name: DistributedBatchSampler
      batch_size: 16
      drop_last: False
      shuffle: True
    loader:
      num_workers: 0
      use_shared_memory: True
  Eval:
    dataset: 
      name: ImageNetDataset
      image_root: ./dataset/
      cls_label_path: ./dataset/aoteman/val_list.txt
      transform_ops:
        - DecodeImage:
            to_rgb: True
            channel_first: False
        - ResizeImage:
            resize_short: 256
        - CropImage:
            size: 224
        - NormalizeImage:
            scale: 1.0/255.0
            mean: [0.485, 0.456, 0.406]
            std: [0.229, 0.224, 0.225]
            order: ''
    sampler:
      name: DistributedBatchSampler
      batch_size: 64
      drop_last: False
      shuffle: False
    loader:
      num_workers: 0
      use_shared_memory: True
Infer:
  infer_imgs: dataset/aoteman/predict_demo.jpg
  batch_size: 10
  transforms:
    - DecodeImage:
        to_rgb: True
        channel_first: False
    - ResizeImage:
        resize_short: 256
    - CropImage:
        size: 224
    - NormalizeImage:
        scale: 1.0/255.0
        mean: [0.485, 0.456, 0.406]
        std: [0.229, 0.224, 0.225]
        order: ''
    - ToCHWImage:
  PostProcess:
    name: Topk
    topk: 4
    class_id_map_file: ppcls/configs/quick_start/new_user/aoteman_label_list.txt
Metric:
  Train:
    - TopkAcc:
        topk: [1, 4]
  Eval:
    - TopkAcc:
        topk: [1, 4]


PaddleClas/ppcls/configs/quick_start/new_user/aoteman_label_list.txt

0 迪迦奥特曼  
1 杰克奥特曼  
2 赛文奥特曼  
3 泰罗奥特曼
!export CUDA_VISIBLE_DEVICES=0
# 开始训练 
!python tools/train.py \
    -c ./ppcls/configs/quick_start/new_user/ShuffleNetV2_x0_25.yaml


或许因为奥特曼之间的区别还是挺大的,最后的结果基本上都接近1了!

7cdce42ed2937bd8d08416e0e09d760f.jpg


模型预测

验证

!python3 tools/infer.py \
    -c ./ppcls/configs/quick_start/new_user/ShuffleNetV2_x0_25.yaml \
    -o Infer.infer_imgs=dataset/aoteman/predict_demo.jpg \
    -o Global.pretrained_model=output/ShuffleNetV2_x0_25/latest
/home/aistudio/PaddleClas/ppcls/arch/backbone/model_zoo/vision_transformer.py:15: DeprecationWarning: Using or importing the ABCs from 'collections' instead of from 'collections.abc' is deprecated, and in 3.8 it will stop working
  from collections import Callable
[2021/07/26 09:56:19] root INFO: 
===========================================================
==        PaddleClas is powered by PaddlePaddle !        ==
===========================================================
==                                                       ==
==   For more info please go to the following website.   ==
==                                                       ==
==       https://github.com/PaddlePaddle/PaddleClas      ==
===========================================================
[2021/07/26 09:56:19] root INFO: Arch : 
[2021/07/26 09:56:19] root INFO:     class_num : 4
[2021/07/26 09:56:19] root INFO:     name : ShuffleNetV2_x0_25
[2021/07/26 09:56:19] root INFO: DataLoader : 
[2021/07/26 09:56:19] root INFO:     Eval : 
[2021/07/26 09:56:19] root INFO:         dataset : 
[2021/07/26 09:56:19] root INFO:             cls_label_path : ./dataset/aoteman/val_list.txt
[2021/07/26 09:56:19] root INFO:             image_root : ./dataset/
[2021/07/26 09:56:19] root INFO:             name : ImageNetDataset
[2021/07/26 09:56:19] root INFO:             transform_ops : 
[2021/07/26 09:56:19] root INFO:                 DecodeImage : 
[2021/07/26 09:56:19] root INFO:                     channel_first : False
[2021/07/26 09:56:19] root INFO:                     to_rgb : True
[2021/07/26 09:56:19] root INFO:                 ResizeImage : 
[2021/07/26 09:56:19] root INFO:                     resize_short : 256
[2021/07/26 09:56:19] root INFO:                 CropImage : 
[2021/07/26 09:56:19] root INFO:                     size : 224
[2021/07/26 09:56:19] root INFO:                 NormalizeImage : 
[2021/07/26 09:56:19] root INFO:                     mean : [0.485, 0.456, 0.406]
[2021/07/26 09:56:19] root INFO:                     order : 
[2021/07/26 09:56:19] root INFO:                     scale : 1.0/255.0
[2021/07/26 09:56:19] root INFO:                     std : [0.229, 0.224, 0.225]
[2021/07/26 09:56:19] root INFO:         loader : 
[2021/07/26 09:56:19] root INFO:             num_workers : 0
[2021/07/26 09:56:19] root INFO:             use_shared_memory : True
[2021/07/26 09:56:19] root INFO:         sampler : 
[2021/07/26 09:56:19] root INFO:             batch_size : 64
[2021/07/26 09:56:19] root INFO:             drop_last : False
[2021/07/26 09:56:19] root INFO:             name : DistributedBatchSampler
[2021/07/26 09:56:19] root INFO:             shuffle : False
[2021/07/26 09:56:19] root INFO:     Train : 
[2021/07/26 09:56:19] root INFO:         dataset : 
[2021/07/26 09:56:19] root INFO:             cls_label_path : ./dataset/aoteman/train_list.txt
[2021/07/26 09:56:19] root INFO:             image_root : ./dataset/
[2021/07/26 09:56:19] root INFO:             name : ImageNetDataset
[2021/07/26 09:56:19] root INFO:             transform_ops : 
[2021/07/26 09:56:19] root INFO:                 DecodeImage : 
[2021/07/26 09:56:19] root INFO:                     channel_first : False
[2021/07/26 09:56:19] root INFO:                     to_rgb : True
[2021/07/26 09:56:19] root INFO:                 ResizeImage : 
[2021/07/26 09:56:19] root INFO:                     resize_short : 256
[2021/07/26 09:56:19] root INFO:                 CropImage : 
[2021/07/26 09:56:19] root INFO:                     size : 224
[2021/07/26 09:56:19] root INFO:                 RandFlipImage : 
[2021/07/26 09:56:19] root INFO:                     flip_code : 1
[2021/07/26 09:56:19] root INFO:                 NormalizeImage : 
[2021/07/26 09:56:19] root INFO:                     mean : [0.485, 0.456, 0.406]
[2021/07/26 09:56:19] root INFO:                     order : 
[2021/07/26 09:56:19] root INFO:                     scale : 1.0/255.0
[2021/07/26 09:56:19] root INFO:                     std : [0.229, 0.224, 0.225]
[2021/07/26 09:56:19] root INFO:         loader : 
[2021/07/26 09:56:19] root INFO:             num_workers : 0
[2021/07/26 09:56:19] root INFO:             use_shared_memory : True
[2021/07/26 09:56:19] root INFO:         sampler : 
[2021/07/26 09:56:19] root INFO:             batch_size : 16
[2021/07/26 09:56:19] root INFO:             drop_last : False
[2021/07/26 09:56:19] root INFO:             name : DistributedBatchSampler
[2021/07/26 09:56:19] root INFO:             shuffle : True
[2021/07/26 09:56:19] root INFO: Global : 
[2021/07/26 09:56:19] root INFO:     checkpoints : None
[2021/07/26 09:56:19] root INFO:     device : gpu
[2021/07/26 09:56:19] root INFO:     epochs : 600
[2021/07/26 09:56:19] root INFO:     eval_during_train : True
[2021/07/26 09:56:19] root INFO:     eval_interval : 10
[2021/07/26 09:56:19] root INFO:     image_shape : [3, 224, 224]
[2021/07/26 09:56:19] root INFO:     output_dir : ./output/
[2021/07/26 09:56:19] root INFO:     pretrained_model : output/ShuffleNetV2_x0_25/latest
[2021/07/26 09:56:19] root INFO:     print_batch_step : 10
[2021/07/26 09:56:19] root INFO:     save_inference_dir : ./inference
[2021/07/26 09:56:19] root INFO:     save_interval : 20
[2021/07/26 09:56:19] root INFO:     use_visualdl : True
[2021/07/26 09:56:19] root INFO: Infer : 
[2021/07/26 09:56:19] root INFO:     PostProcess : 
[2021/07/26 09:56:19] root INFO:         class_id_map_file : ppcls/configs/quick_start/new_user/aoteman_label_list.txt
[2021/07/26 09:56:19] root INFO:         name : Topk
[2021/07/26 09:56:19] root INFO:         topk : 4
[2021/07/26 09:56:19] root INFO:     batch_size : 10
[2021/07/26 09:56:19] root INFO:     infer_imgs : dataset/aoteman/predict_demo.jpg
[2021/07/26 09:56:19] root INFO:     transforms : 
[2021/07/26 09:56:19] root INFO:         DecodeImage : 
[2021/07/26 09:56:19] root INFO:             channel_first : False
[2021/07/26 09:56:19] root INFO:             to_rgb : True
[2021/07/26 09:56:19] root INFO:         ResizeImage : 
[2021/07/26 09:56:19] root INFO:             resize_short : 256
[2021/07/26 09:56:19] root INFO:         CropImage : 
[2021/07/26 09:56:19] root INFO:             size : 224
[2021/07/26 09:56:19] root INFO:         NormalizeImage : 
[2021/07/26 09:56:19] root INFO:             mean : [0.485, 0.456, 0.406]
[2021/07/26 09:56:19] root INFO:             order : 
[2021/07/26 09:56:19] root INFO:             scale : 1.0/255.0
[2021/07/26 09:56:19] root INFO:             std : [0.229, 0.224, 0.225]
[2021/07/26 09:56:19] root INFO:         ToCHWImage : None
[2021/07/26 09:56:19] root INFO: Loss : 
[2021/07/26 09:56:19] root INFO:     Eval : 
[2021/07/26 09:56:19] root INFO:         CELoss : 
[2021/07/26 09:56:19] root INFO:             weight : 1.0
[2021/07/26 09:56:19] root INFO:     Train : 
[2021/07/26 09:56:19] root INFO:         CELoss : 
[2021/07/26 09:56:19] root INFO:             weight : 1.0
[2021/07/26 09:56:19] root INFO: Metric : 
[2021/07/26 09:56:19] root INFO:     Eval : 
[2021/07/26 09:56:19] root INFO:         TopkAcc : 
[2021/07/26 09:56:19] root INFO:             topk : [1, 4]
[2021/07/26 09:56:19] root INFO:     Train : 
[2021/07/26 09:56:19] root INFO:         TopkAcc : 
[2021/07/26 09:56:19] root INFO:             topk : [1, 4]
[2021/07/26 09:56:19] root INFO: Optimizer : 
[2021/07/26 09:56:19] root INFO:     lr : 
[2021/07/26 09:56:19] root INFO:         learning_rate : 0.0125
[2021/07/26 09:56:19] root INFO:         name : Cosine
[2021/07/26 09:56:19] root INFO:         warmup_epoch : 5
[2021/07/26 09:56:19] root INFO:     momentum : 0.9
[2021/07/26 09:56:19] root INFO:     name : Momentum
[2021/07/26 09:56:19] root INFO:     regularizer : 
[2021/07/26 09:56:19] root INFO:         coeff : 1e-05
[2021/07/26 09:56:19] root INFO:         name : L2
W0726 09:56:19.698617 32194 device_context.cc:404] Please NOTE: device: 0, GPU Compute Capability: 7.0, Driver API Version: 10.1, Runtime API Version: 10.1
W0726 09:56:19.703610 32194 device_context.cc:422] device: 0, cuDNN Version: 7.6.
[2021/07/26 09:56:24] root INFO: train with paddle 2.1.0 and device CUDAPlace(0)
/opt/conda/envs/python35-paddle120-env/lib/python3.7/site-packages/paddle/tensor/creation.py:125: DeprecationWarning: `np.object` is a deprecated alias for the builtin `object`. To silence this warning, use `object` by itself. Doing this will not modify any behavior and is safe. 
Deprecated in NumPy 1.20; for more details and guidance: https://numpy.org/devdocs/release/1.20.0-notes.html#deprecations
  if data.dtype == np.object:
[{'class_ids': [0, 3, 1, 2], 'scores': [0.99999, 1e-05, 0.0, 0.0], 'file_name': 'dataset/aoteman/predict_demo.jpg', 'label_names': ['迪迦奥特曼', '泰罗奥特曼', '杰克奥特曼', '赛文奥特曼']}]


真实的图片是:

3d29c4f3e01d5a241cb7643c50a55e1d.jpg


预测的结果是:

‘class_ids’: [0, 3, 1, 2], ‘scores’: [0.99999, 1e-05, 0.0, 0.0],‘label_names’: [‘迪迦奥特曼’, ‘泰罗奥特曼’, ‘杰克奥特曼’, ‘赛文奥特曼’]


也就是说0的概率最大,0对应的结果是迪迦,也就是说结果为迪迦,预测无误。


再次验证

# 再来一张其他试试,防止有意外情况,自行百度找图,在下面jpg替换即可
!python3 tools/infer.py \
    -c ./ppcls/configs/quick_start/new_user/ShuffleNetV2_x0_25.yaml \
    -o Infer.infer_imgs=dataset/aoteman/predict_tailuo.jpg \
    -o Global.pretrained_model=output/ShuffleNetV2_x0_25/latest
/home/aistudio/PaddleClas/ppcls/arch/backbone/model_zoo/vision_transformer.py:15: DeprecationWarning: Using or importing the ABCs from 'collections' instead of from 'collections.abc' is deprecated, and in 3.8 it will stop working
  from collections import Callable
[2021/07/26 09:57:12] root INFO: 
===========================================================
==        PaddleClas is powered by PaddlePaddle !        ==
===========================================================
==                                                       ==
==   For more info please go to the following website.   ==
==                                                       ==
==       https://github.com/PaddlePaddle/PaddleClas      ==
===========================================================
[2021/07/26 09:57:12] root INFO: Arch : 
[2021/07/26 09:57:12] root INFO:     class_num : 4
[2021/07/26 09:57:12] root INFO:     name : ShuffleNetV2_x0_25
[2021/07/26 09:57:12] root INFO: DataLoader : 
[2021/07/26 09:57:12] root INFO:     Eval : 
[2021/07/26 09:57:12] root INFO:         dataset : 
[2021/07/26 09:57:12] root INFO:             cls_label_path : ./dataset/aoteman/val_list.txt
[2021/07/26 09:57:12] root INFO:             image_root : ./dataset/
[2021/07/26 09:57:12] root INFO:             name : ImageNetDataset
[2021/07/26 09:57:12] root INFO:             transform_ops : 
[2021/07/26 09:57:12] root INFO:                 DecodeImage : 
[2021/07/26 09:57:12] root INFO:                     channel_first : False
[2021/07/26 09:57:12] root INFO:                     to_rgb : True
[2021/07/26 09:57:12] root INFO:                 ResizeImage : 
[2021/07/26 09:57:12] root INFO:                     resize_short : 256
[2021/07/26 09:57:12] root INFO:                 CropImage : 
[2021/07/26 09:57:12] root INFO:                     size : 224
[2021/07/26 09:57:12] root INFO:                 NormalizeImage : 
[2021/07/26 09:57:12] root INFO:                     mean : [0.485, 0.456, 0.406]
[2021/07/26 09:57:12] root INFO:                     order : 
[2021/07/26 09:57:12] root INFO:                     scale : 1.0/255.0
[2021/07/26 09:57:12] root INFO:                     std : [0.229, 0.224, 0.225]
[2021/07/26 09:57:12] root INFO:         loader : 
[2021/07/26 09:57:12] root INFO:             num_workers : 0
[2021/07/26 09:57:12] root INFO:             use_shared_memory : True
[2021/07/26 09:57:12] root INFO:         sampler : 
[2021/07/26 09:57:12] root INFO:             batch_size : 64
[2021/07/26 09:57:12] root INFO:             drop_last : False
[2021/07/26 09:57:12] root INFO:             name : DistributedBatchSampler
[2021/07/26 09:57:12] root INFO:             shuffle : False
[2021/07/26 09:57:12] root INFO:     Train : 
[2021/07/26 09:57:12] root INFO:         dataset : 
[2021/07/26 09:57:12] root INFO:             cls_label_path : ./dataset/aoteman/train_list.txt
[2021/07/26 09:57:12] root INFO:             image_root : ./dataset/
[2021/07/26 09:57:12] root INFO:             name : ImageNetDataset
[2021/07/26 09:57:12] root INFO:             transform_ops : 
[2021/07/26 09:57:12] root INFO:                 DecodeImage : 
[2021/07/26 09:57:12] root INFO:                     channel_first : False
[2021/07/26 09:57:12] root INFO:                     to_rgb : True
[2021/07/26 09:57:12] root INFO:                 ResizeImage : 
[2021/07/26 09:57:12] root INFO:                     resize_short : 256
[2021/07/26 09:57:12] root INFO:                 CropImage : 
[2021/07/26 09:57:12] root INFO:                     size : 224
[2021/07/26 09:57:12] root INFO:                 RandFlipImage : 
[2021/07/26 09:57:12] root INFO:                     flip_code : 1
[2021/07/26 09:57:12] root INFO:                 NormalizeImage : 
[2021/07/26 09:57:12] root INFO:                     mean : [0.485, 0.456, 0.406]
[2021/07/26 09:57:12] root INFO:                     order : 
[2021/07/26 09:57:12] root INFO:                     scale : 1.0/255.0
[2021/07/26 09:57:12] root INFO:                     std : [0.229, 0.224, 0.225]
[2021/07/26 09:57:12] root INFO:         loader : 
[2021/07/26 09:57:12] root INFO:             num_workers : 0
[2021/07/26 09:57:12] root INFO:             use_shared_memory : True
[2021/07/26 09:57:12] root INFO:         sampler : 
[2021/07/26 09:57:12] root INFO:             batch_size : 16
[2021/07/26 09:57:12] root INFO:             drop_last : False
[2021/07/26 09:57:12] root INFO:             name : DistributedBatchSampler
[2021/07/26 09:57:12] root INFO:             shuffle : True
[2021/07/26 09:57:12] root INFO: Global : 
[2021/07/26 09:57:12] root INFO:     checkpoints : None
[2021/07/26 09:57:12] root INFO:     device : gpu
[2021/07/26 09:57:12] root INFO:     epochs : 600
[2021/07/26 09:57:12] root INFO:     eval_during_train : True
[2021/07/26 09:57:12] root INFO:     eval_interval : 10
[2021/07/26 09:57:12] root INFO:     image_shape : [3, 224, 224]
[2021/07/26 09:57:12] root INFO:     output_dir : ./output/
[2021/07/26 09:57:12] root INFO:     pretrained_model : output/ShuffleNetV2_x0_25/latest
[2021/07/26 09:57:12] root INFO:     print_batch_step : 10
[2021/07/26 09:57:12] root INFO:     save_inference_dir : ./inference
[2021/07/26 09:57:12] root INFO:     save_interval : 20
[2021/07/26 09:57:12] root INFO:     use_visualdl : True
[2021/07/26 09:57:12] root INFO: Infer : 
[2021/07/26 09:57:12] root INFO:     PostProcess : 
[2021/07/26 09:57:12] root INFO:         class_id_map_file : ppcls/configs/quick_start/new_user/aoteman_label_list.txt
[2021/07/26 09:57:12] root INFO:         name : Topk
[2021/07/26 09:57:12] root INFO:         topk : 4
[2021/07/26 09:57:12] root INFO:     batch_size : 10
[2021/07/26 09:57:12] root INFO:     infer_imgs : dataset/aoteman/predict_tailuo.jpg
[2021/07/26 09:57:12] root INFO:     transforms : 
[2021/07/26 09:57:12] root INFO:         DecodeImage : 
[2021/07/26 09:57:12] root INFO:             channel_first : False
[2021/07/26 09:57:12] root INFO:             to_rgb : True
[2021/07/26 09:57:12] root INFO:         ResizeImage : 
[2021/07/26 09:57:12] root INFO:             resize_short : 256
[2021/07/26 09:57:12] root INFO:         CropImage : 
[2021/07/26 09:57:12] root INFO:             size : 224
[2021/07/26 09:57:12] root INFO:         NormalizeImage : 
[2021/07/26 09:57:12] root INFO:             mean : [0.485, 0.456, 0.406]
[2021/07/26 09:57:12] root INFO:             order : 
[2021/07/26 09:57:12] root INFO:             scale : 1.0/255.0
[2021/07/26 09:57:12] root INFO:             std : [0.229, 0.224, 0.225]
[2021/07/26 09:57:12] root INFO:         ToCHWImage : None
[2021/07/26 09:57:12] root INFO: Loss : 
[2021/07/26 09:57:12] root INFO:     Eval : 
[2021/07/26 09:57:12] root INFO:         CELoss : 
[2021/07/26 09:57:12] root INFO:             weight : 1.0
[2021/07/26 09:57:12] root INFO:     Train : 
[2021/07/26 09:57:12] root INFO:         CELoss : 
[2021/07/26 09:57:12] root INFO:             weight : 1.0
[2021/07/26 09:57:12] root INFO: Metric : 
[2021/07/26 09:57:12] root INFO:     Eval : 
[2021/07/26 09:57:12] root INFO:         TopkAcc : 
[2021/07/26 09:57:12] root INFO:             topk : [1, 4]
[2021/07/26 09:57:12] root INFO:     Train : 
[2021/07/26 09:57:12] root INFO:         TopkAcc : 
[2021/07/26 09:57:12] root INFO:             topk : [1, 4]
[2021/07/26 09:57:12] root INFO: Optimizer : 
[2021/07/26 09:57:12] root INFO:     lr : 
[2021/07/26 09:57:12] root INFO:         learning_rate : 0.0125
[2021/07/26 09:57:12] root INFO:         name : Cosine
[2021/07/26 09:57:12] root INFO:         warmup_epoch : 5
[2021/07/26 09:57:12] root INFO:     momentum : 0.9
[2021/07/26 09:57:12] root INFO:     name : Momentum
[2021/07/26 09:57:12] root INFO:     regularizer : 
[2021/07/26 09:57:12] root INFO:         coeff : 1e-05
[2021/07/26 09:57:12] root INFO:         name : L2
W0726 09:57:12.110759 32311 device_context.cc:404] Please NOTE: device: 0, GPU Compute Capability: 7.0, Driver API Version: 10.1, Runtime API Version: 10.1
W0726 09:57:12.115746 32311 device_context.cc:422] device: 0, cuDNN Version: 7.6.
[2021/07/26 09:57:17] root INFO: train with paddle 2.1.0 and device CUDAPlace(0)
/opt/conda/envs/python35-paddle120-env/lib/python3.7/site-packages/paddle/tensor/creation.py:125: DeprecationWarning: `np.object` is a deprecated alias for the builtin `object`. To silence this warning, use `object` by itself. Doing this will not modify any behavior and is safe. 
Deprecated in NumPy 1.20; for more details and guidance: https://numpy.org/devdocs/release/1.20.0-notes.html#deprecations
  if data.dtype == np.object:
[{'class_ids': [3, 2, 1, 0], 'scores': [0.98939, 0.01061, 0.0, 0.0], 'file_name': 'dataset/aoteman/predict_tailuo.jpg', 'label_names': ['泰罗奥特曼', '赛文奥特曼', '杰克奥特曼', '迪迦奥特曼']}]


真实的图片是:


a3b791a8324c7fa9a33fbab54b8293f8.jpg


预测的结果是:

‘class_ids’: [3, 2, 1, 0], ‘scores’: [0.98939, 0.01061, 0.0, 0.0],‘label_names’: [‘泰罗奥特曼’, ‘赛文奥特曼’, ‘杰克奥特曼’, ‘迪迦奥特曼’]

也就是说3的概率为0.98939,最大,3对应的结果是泰罗,也就是说结果为泰罗,预测无误。


总结

项目总结

使用下来,用了很多版本的paddleclas,比如2.1,2.2,develop最后还是选择使用了2.2

版本差异如下:

2.1 生成的模型是文件夹存储的形式,并且有最佳模型文件

2.2 生成的模型文件直接排序在一个大文件夹下、支持写一个预测类别文件,预测输出时直接可以对照看是哪个类别。

使用paddleclas不管是哪个版本,最主要的还是数据处理和调参

3.1 数据处理,将信息转变为txt:相对路径+空格+类别

3.2 调参,变成自己的对应信息

主要是以下几点:分类数、图片总量、训练和验证的路径、图像尺寸、训练和预测的num_workers: 0才可以在aistudio跑通。

后续我将推出安卓部署版本,冲冲冲!(如果我能行的话…)

相关实践学习
部署Stable Diffusion玩转AI绘画(GPU云服务器)
本实验通过在ECS上从零开始部署Stable Diffusion来进行AI绘画创作,开启AIGC盲盒。
相关文章
|
4月前
|
人工智能 并行计算 PyTorch
AI计算机视觉笔记十八:Swin Transformer目标检测环境搭建
本文详细记录了Swin Transformer在AutoDL平台上的环境搭建与训练过程。作者从租用GPU实例开始,逐步介绍了虚拟环境的创建、PyTorch安装、mmcv及mmdetection的配置,并解决了安装过程中遇到的各种问题,如cython版本冲突等。最后,通过修改代码实现目标检测结果的保存。如需了解更多细节或获取完整代码,请联系作者。原文链接:[原文链接](请在此处插入原文链接)。
|
4月前
|
人工智能 PyTorch 算法框架/工具
AI计算机视觉笔记二十二:基于 LeNet5 的手写数字识别及训练
本文介绍了使用PyTorch复现LeNet5模型并检测手写数字的过程。通过搭建PyTorch环境、安装相关库和下载MNIST数据集,实现了模型训练与测试。训练过程涉及创建虚拟环境、安装PyTorch及依赖库、准备数据集,并编写训练代码。最终模型在测试集上的准确率达到0.986,满足预期要求。此项目为后续在RK3568平台上部署模型奠定了基础。
|
4月前
|
人工智能 监控 算法
AI计算机视觉笔记二十 八:基于YOLOv8实例分割的DeepSORT多目标跟踪
本文介绍了YOLOv8实例分割与DeepSORT视觉跟踪算法的结合应用,通过YOLOv8进行目标检测分割,并利用DeepSORT实现特征跟踪,在复杂环境中保持目标跟踪的准确性与稳定性。该技术广泛应用于安全监控、无人驾驶等领域。文章提供了环境搭建、代码下载及测试步骤,并附有详细代码示例。
|
4月前
|
人工智能 PyTorch 算法框架/工具
AI计算机视觉笔记十二:基于 LeNet5 的手写数字识别及训练
本文档介绍了如何使用PyTorch框架复现经典的LeNet5模型,并通过MNIST数据集进行训练与测试。首先,创建虚拟环境并安装所需库,接着下载MNIST数据集。训练部分涉及四个主要文件:`LeNet5.py`、`myDatast.py`、`readMnist.py` 和 `train.py`。通过这些文件搭建模型并完成训练过程。最后,通过测试脚本验证模型准确性,结果显示准确率达到0.986,满足预期需求。文档还提供了详细的环境配置和代码实现细节。
|
机器学习/深度学习 人工智能 自然语言处理
500篇论文!最全代码大模型综述来袭
11月14日,蚂蚁集团联合上海交通大学发布55页代码大模型综述,覆盖超过50个模型、30个下游任务、500篇参考文献,全方位总结大语言模型在代码相关应用中的最新进展与挑战。
1411 0
|
计算机视觉
【前沿经典模型】ResNet最强改进之ResNeSt(附源码)(二)
【前沿经典模型】ResNet最强改进之ResNeSt(附源码)(二)
551 0
|
机器学习/深度学习 计算机视觉 网络架构
【前沿经典模型】ResNet最强改进之ResNeSt(附源码)(一)
【前沿经典模型】ResNet最强改进之ResNeSt(附源码)(一)
2326 0
|
机器学习/深度学习 数据可视化 算法
【动手学计算机视觉】第十五讲:卷积神经网络之LeNet
LeNet是由2019年图灵奖获得者、深度学习三位顶级大牛之二的Yann LeCun、Yoshua Bengio于1998年提出,它也被认为被认为是最早的卷积神经网络模型。但是,由于算力和数据集的限制,卷积神经网络提出之后一直都被传统目标识别算法(特征提取+分类器)所压制。终于在沉寂了14年之后的2012年,AlexNet在ImageNet挑战赛上一骑绝尘,使得卷积神经网络又一次成为了研究的热点。尽管近几年深度卷积网络非常热门,LeNet基本处于被忽略的状态,但是它的思想依然对CNN的学习有着不可忽视的价值。本文就详细介绍一下LeNet的结构,同时会详细介绍网络模型的搭建方法。
【动手学计算机视觉】第十五讲:卷积神经网络之LeNet
|
机器学习/深度学习 算法 数据挖掘
【动手学计算机视觉】第十六讲:卷积神经网络之AlexNet
前文详细介绍了卷积神经网络的开山之作LeNet,虽然近几年卷积神经网络非常热门,但是在LeNet出现后的十几年里,在目标识别领域卷积神经网络一直被传统目标识别算法(特征提取+分类器)所压制,直到2012年AlexNet在ImageNet挑战赛一举夺魁,使得卷积神经网络再次引起人们的重视,并因此而一发不可收拾,卷积神经网络的研究如雨后春笋一般不断涌现,推陈出新,后续很多卷积神经网络模型也都是在此基础上进行不断的优化改进,本文就来详细介绍一些AlexNet模型。
【动手学计算机视觉】第十六讲:卷积神经网络之AlexNet
|
机器学习/深度学习 计算机视觉 网络架构
【动手学计算机视觉】第十八讲:卷积神经网络之GoogLeNet
本文的主角GoogLeNet和上篇文章讲到的VGG出现在同一年ILSVRC比赛的舞台上,它在效果方面超过了VGG并取得了当年的冠军。虽然二者出自同一年,但是在模型方面却有着天壤之别,无论是在克服网络深度方面还是在输出层处理方面均提出了非常新颖的思路,本文就来详细介绍一下这个名噪一时的卷积神经网络模型。
【动手学计算机视觉】第十八讲:卷积神经网络之GoogLeNet