实证与虚无,抽象和具象,Go lang1.18入门精炼教程,由白丁入鸿儒,Go lang接口(interface)的使用EP08

简介: 看到接口这两个字,我们一定会联想到面向接口编程。说白了就是接口指定执行对象的具体行为,也就是接口表示让执行对象具体应该做什么,所以,普遍意义上讲,接口是抽象的,而实际执行行为,则是具象的。

看到接口这两个字,我们一定会联想到面向接口编程。说白了就是接口指定执行对象的具体行为,也就是接口表示让执行对象具体应该做什么,所以,普遍意义上讲,接口是抽象的,而实际执行行为,则是具象的。

接口(interface)的定义

在Go lang中,接口是一组方法签名,当类型为接口中的所有方法提供定义时,它被称为实现接口。和面向接口的思想非常类似,接口指定了类型应该具有的方法,类型决定了到底该怎么实现这些方法:

/* 定义接口 */  
type interface_name interface {  
   method_name1 [return_type]  
   method_name2 [return_type]  
   method_name3 [return_type]  
   ...  
   method_namen [return_type]  
}  
  
/* 定义结构体 */  
type struct_name struct {  
   /* variables */  
}  
  
/* 实现接口方法 */  
func (struct_name_variable struct_name) method_name1() [return_type] {  
   /* 方法实现 */  
}  
...  
func (struct_name_variable struct_name) method_namen() [return_type] {  
   /* 方法实现*/  
}

具体实现方式:

package main  
  
import (  
    "fmt"  
)  
  
type Phone interface {  
    call()  
}  
  
type Android struct {  
}  
  
func (android Android) call() {  
    fmt.Println("I am Android")  
}  
  
type Ios struct {  
}  
  
func (ios Ios) call() {  
    fmt.Println("I am Ios")  
}  
  
func main() {  
    var phone Phone  
  
    phone = new(Android)  
    phone.call()  
  
    phone = new(Ios)  
    phone.call()  
  
}

程序返回:

I am Android  
I am Ios

是的,现在我们可以结构体、函数、以及接口三箭齐发了,这里首先定义好手机接口,并且指定call()方法,意思是我在抽象层面拥有一个手机,手机应该具有打电话的功能。

随后分别定义结构体和函数(也是方法),分别具现化的实现接口的指定行为,精神上大家是一样的,但肉体上,一个是安卓,另一个则是苹果。

Go lang中,接口可以被任意的对象实现,同样地,一个对象也可以实现任意多个接口,任意的类型都实现了空接口(interface{}),也就是包含0个method的interface。

诚然,如果单独使用结构体,我们也可以,实现类似多态的结构:



package main  
  
import "fmt"  
  
type Human struct {  
    name  string  
    age   int  
    phone string  
}  
type Student struct {  
    Human  //匿名字段  
    school string  
    loan   float32  
}  
type Employee struct {  
    Human   //匿名字段  
    company string  
    money   float32  
} //Human实现Sayhi方法  
func (h Human) SayHi() {  
    fmt.Printf("Hi, I am %s you can call me on %s\n", h.name, h.phone)  
} //Human实现Sing方法  
func (h Human) Sing(lyrics string) {  
    fmt.Println("。。。。。。。。", lyrics)  
} //Employee重写Human的SayHi方法  
func (e Employee) SayHi() {  
    fmt.Printf("Hi, I am %s, I work at %s. Call me on %s\n", e.name,  
        e.company, e.phone) //Yes you can split into 2 lines here.  
}

可以单独为结构体定义方法,但如果接口参与逻辑:

type Men interface {  
    SayHi()  
    Sing(lyrics string)  
}  
  

func main() {  
    mike := Student{Human{"Mike", 10, "1"}, "MIT", 0.00}  
    paul := Student{Human{"Paul", 20, "2"}, "Harvard", 100}  
    sam := Employee{Human{"Sam", 30, "3"}, "Golang Inc.", 1000}  
    Tom := Employee{Human{"Tom", 40, "4"}, "Things Ltd.", 5000}  
    //定义Men类型的变量i  
    var i Men  
    //i能存储Student  
    i = mike  
    fmt.Println("This is Mike, a Student:")  
    i.SayHi()  
    i.Sing("song")  
    //i也能存储Employee  
    i = Tom  
    fmt.Println("This is Tom, an Employee:")  
    i.SayHi()  
    i.Sing("song")  
    //定义了slice Men  
    fmt.Println("Let's use a slice of Men and see what happens")  
    x := make([]Men, 3)  
    //T这三个都是不同类型的元素,但是他们实现了同一个接口  
    x[0], x[1], x[2] = paul, sam, mike  
    for _, value := range x {  
        value.SayHi()  
    }  
}

程序返回:



This is Mike, a Student:  
Hi, I am Mike you can call me on 1  
。。。。。。。。 song  
This is Tom, an Employee:  
Hi, I am Tom, I work at Things Ltd.. Call me on 4  
。。。。。。。。 song  
Let's use a slice of Men and see what happens  
Hi, I am Paul you can call me on 2  
Hi, I am Sam, I work at Golang Inc.. Call me on 3  
Hi, I am Mike you can call me on 1

由此可见,接口的出现,把本来不相关的结构体类型以抽象的形式结合了起来,不同的类型实现内容不同的共性方法。

也就是说,Men接口类型的变量i,那么i里面可以存Human、Student或者Employee值,所以i是抽象的,而Human、Student或者Employee就是i的具象化操作。

接口指定函数参数

接口不仅仅可以指定无参方法,也可以指定具体的参数,让函数接受各种类型的参数:

package main  
  
import "fmt"  
  
type Human interface {  
    Len()  
}  
type Student interface {  
    Human  
}  
  
type Test struct {  
}  
  
func (h *Test) Len() {  
    fmt.Println("10个")  
}  
func main() {  
    var s Student  
    s = new(Test)  
    s.Len()  
}

程序返回:

10个

这里使用接口嵌套的形式,Human接口定义了Len方法,结构体Test实现了所有的Len接口方法,当结构体s中调用Test结构体的时候,s就相当于Python中的继承,s继承了Test,因此,s可以不用重写所有的Human接口中的方法,因为父构造器已经实现了接口。

鸭子类型(ducktyping)

什么是鸭子类型?当看到一只鸟走起来像鸭子、游泳起来像鸭子、叫起来也像鸭子,那么这只鸟就可以被称为鸭子。

所谓远看山有色,近听水无声,春去花还在,人来鸟不惊,意象上来讲,一个事物究竟是不是某一种类型,取决于它具不具备这个类型的特性,这就是鸭子类型的本质。

所以鸭子类型主要描述事物的外部行为而非内部构造,在面向对象的编程语言中,比如Python中,一个对象有效的语义,不是由继承自特定的类或实现特定的接口,而是由"当前方法和属性的集合"决定。

编写test.py文件:

class PsyDuck():  
    def gaga(self):  
        print("这是可达鸭")  
  
  
# 使用的对象和方法  
class DoningdDuck():  
    def gaga(self):  
        print("这是唐老鸭")  
  
  
# 被调用的函数  
def duckSay(func):  
    return func.gaga()  
  
  
# 限制调用方式  
if __name__ != '__main__':  
    print("must __main__")  
  
if __name__ == "__main__":  
  
    # 实例化对象  
    duck = PsyDuck()  
    person = DoningdDuck()  
    # 调用函数  
    duckSay(duck)  
    duckSay(person)

程序返回:

这是可达鸭  
这是唐老鸭

所以到底是什么鸭子不重要,重要的是调用了谁的实例。

再来看看go lang的手笔:

package main  
  
import "fmt"  
  
//定义一个鸭子接口  
//Go 接口是一组方法的集合,可以理解为抽象的类型。它提供了一种非侵入式的接口。任何类型,只要实现了该接口中方法集,那么就属于这个类型。  
type Duck interface {  
    Gaga()  
}  
  
//假设现在有一个可达鸭类型  
type PsyDuck struct{}  
  
//可达鸭声明方法-满足鸭子会嘎嘎叫的特性  
func (pd PsyDuck) Gaga() {  
    fmt.Println("this is PsyDuck")  
}  
  
//假设现在有一个唐老鸭类型  
type DonaldDuck struct{}  
  
//唐老鸭声明方法-满足鸭子会嘎嘎叫的特性  
func (dd DonaldDuck) Gaga() {  
    fmt.Println("this is DoningdDuck")  
}  
  
//要调用的函数 - 负责执行鸭子能做的事情,注意这里的参数,有类型限制为Duck接口  
func DuckSay(d Duck) {  
    d.Gaga()  
}  
  
func main() {  
    //提示开始打印  
    fmt.Println("duck typing")  
  
    //实例化对象  
    var pd PsyDuck    //可达鸭类型  
    var dd DonaldDuck //唐老鸭类型  
  
    //调用方法  
    DuckSay(pd) //因为可达鸭实现了所有鸭子的函数,所以可以这么用  
    DuckSay(dd) //因为唐老鸭实现了所有鸭子的函数,所以可以这么用  
}

程序返回:

duck typing  
this is PsyDuck  
this is DoningdDuck

这里首先定义抽象的鸭子接口,指定gaga方法,不同的结构体:可达鸭、唐老鸭分别绑定并且实现了鸭子接口的方法,然后声明一个调用函数,在执行的时候,将结构体变量传递给调用函数,动态地实现了不同类型的方法。

结语

所谓接口(interface)的抽象性,就是从表面看到本质,从片面看到整体,然后抽出那些稳定的、共有的特性。平时我们会考虑代码的重用性,组件的复用性,同一个功能对不同场景的复用性,有了复用的能力,就能够用更少的开发去满足更多场景的同类需求问题。从而能够从一个具体的需求,看到一类的需求,看到衍生的相关的需求,甚至再对需求进行分类,看到更高层面的需求。进而才能够系统性解决同类的需求而不是就事论事点对点解决问题。

所以,总的来说,接口的极致就是抽象,而抽象的极致,则是格局,接口,可以更好的帮我们扩大程序视野的格局。

相关文章
|
3月前
|
Cloud Native 安全 Java
Go语言深度解析:从入门到精通的完整指南
🌟蒋星熠Jaxonic,Go语言探索者。深耕云计算、微服务与并发编程,以代码为笔,在二进制星河中书写极客诗篇。分享Go核心原理、性能优化与实战架构,助力开发者掌握云原生时代利器。#Go语言 #并发编程 #性能优化
468 43
Go语言深度解析:从入门到精通的完整指南
|
8月前
|
人工智能 安全 算法
Go入门实战:并发模式的使用
本文详细探讨了Go语言的并发模式,包括Goroutine、Channel、Mutex和WaitGroup等核心概念。通过具体代码实例与详细解释,介绍了这些模式的原理及应用。同时分析了未来发展趋势与挑战,如更高效的并发控制、更好的并发安全及性能优化。Go语言凭借其优秀的并发性能,在现代编程中备受青睐。
252 33
|
3月前
|
Java 编译器 Go
【Golang】(1)Go的运行流程步骤与包的概念
初次上手Go语言!先来了解它的运行流程吧! 在Go中对包的概念又有怎样不同的见解呢?
185 4
|
3月前
|
Java 编译器 Go
【Golang】(5)Go基础的进阶知识!带你认识迭代器与类型以及声明并使用接口与泛型!
好烦好烦好烦!你是否还在为弄不懂Go中的泛型和接口而烦恼?是否还在苦恼思考迭代器的运行方式和意义?本篇文章将带你了解Go的接口与泛型,还有迭代器的使用,附送类型断言的解释
211 3
|
3月前
|
存储 安全 Java
【Golang】(4)Go里面的指针如何?函数与方法怎么不一样?带你了解Go不同于其他高级语言的语法
结构体可以存储一组不同类型的数据,是一种符合类型。Go抛弃了类与继承,同时也抛弃了构造方法,刻意弱化了面向对象的功能,Go并非是一个传统OOP的语言,但是Go依旧有着OOP的影子,通过结构体和方法也可以模拟出一个类。
234 1
|
4月前
|
Cloud Native 安全 Java
Go语言深度解析:从入门到精通的完整指南
🌟 蒋星熠Jaxonic,执着的星际旅人,用Go语言编写代码诗篇。🚀 Go语言以简洁、高效、并发为核心,助力云计算与微服务革新。📚 本文详解Go语法、并发模型、性能优化与实战案例,助你掌握现代编程精髓。🌌 从goroutine到channel,从内存优化到高并发架构,全面解析Go的强大力量。🔧 实战构建高性能Web服务,展现Go在云原生时代的无限可能。✨ 附技术对比、最佳实践与生态全景,带你踏上Go语言的星辰征途。#Go语言 #并发编程 #云原生 #性能优化
|
6月前
|
人工智能 测试技术 持续交付
Golang深入浅出之-Go语言中的持续集成与持续部署(CI/CD)
持续集成与持续部署(CI/CD)是现代软件开发的关键实践,尤其适用于Go语言项目。本文探讨了Go项目中常见的CI/CD问题,如测试覆盖不足、版本不一致和构建时间过长,并提供解决方案及GitHub Actions示例代码,帮助开发者优化流程,提升交付效率和质量。
211 5
|
9月前
|
存储 算法 数据可视化
【二叉树遍历入门:从中序遍历到层序与右视图】【LeetCode 热题100】94:二叉树的中序遍历、102:二叉树的层序遍历、199:二叉树的右视图(详细解析)(Go语言版)
本文详细解析了二叉树的三种经典遍历方式:中序遍历(94题)、层序遍历(102题)和右视图(199题)。通过递归与迭代实现中序遍历,深入理解深度优先搜索(DFS);借助队列完成层序遍历和右视图,掌握广度优先搜索(BFS)。文章对比DFS与BFS的思维方式,总结不同遍历的应用场景,为后续构造树结构奠定基础。
449 10
|
11月前
|
存储 Go
Go 语言入门指南:切片
Golang中的切片(Slice)是基于数组的动态序列,支持变长操作。它由指针、长度和容量三部分组成,底层引用一个连续的数组片段。切片提供灵活的增减元素功能,语法形式为`[]T`,其中T为元素类型。相比固定长度的数组,切片更常用,允许动态调整大小,并且多个切片可以共享同一底层数组。通过内置的`make`函数可创建指定长度和容量的切片。需要注意的是,切片不能直接比较,只能与`nil`比较,且空切片的长度为0。
277 3
Go 语言入门指南:切片
|
10月前
|
Go 开发者
go-carbon v2.6.0 重大版本更新,轻量级、语义化、对开发者友好的 golang 时间处理库
carbon 是一个轻量级、语义化、对开发者友好的 Golang 时间处理库,提供了对时间穿越、时间差值、时间极值、时间判断、星座、星座、农历、儒略日 / 简化儒略日、波斯历 / 伊朗历的支持
226 3

推荐镜像

更多