Python读取Excel并将数据转为字典dict变量

简介: 本文介绍基于Python语言,将一个Excel表格文件中的数据导入到Python中,并将其通过字典格式来存储的方法~

  本文介绍基于Python语言,将一个Excel表格文件中的数据导入到Python中,并将其通过字典格式来存储的方法。

  我们以如下所示的一个表格(.xlsx格式)作为简单的示例。其中,表格共有两列,第一列为学号,第二列为姓名,且每一行的学号都不重复;同时表格的第一行为表头。

  假设我们需要将第一列的学号数据作为字典的,而第二列姓名数据作为字典的

  首先,导入必要的库。

from openpyxl import load_workbook

  随后,列出需要转换为字典格式数据的Excel文件的路径与名称,以及数据开头所在行、数据的总行数。在这里,由于第一行是表头,因此开头所在行look_up_table_row_start就是2;同时这个表格共有32位同学的信息,因此总行数look_up_table_row_number就是32

look_up_table_path='F:/学习/2020-2021-2/形势与政策(二)/论文与学习心得/01_学习心得/Name_Number.xlsx'
look_up_table_row_start=2
look_up_table_row_number=32

  接下来,我们就可以直接依次读取Excel表格文件中的数据,并将其导入到字典格式的变量name_number_dict中。

name_number_dict={}
look_up_table_excel=load_workbook(look_up_table_path)
look_up_table_all_sheet=look_up_table_excel.get_sheet_names()
look_up_table_sheet=look_up_table_excel.get_sheet_by_name(look_up_table_all_sheet[0])
for i in range(look_up_table_row_start,look_up_table_row_start+look_up_table_row_number):
    number=look_up_table_sheet.cell(i,1).value
    name=look_up_table_sheet.cell(i,2).value
    name_number_dict[number]=name

  至此,大功告成;我们来看一看name_number_dict此时的状态:

  其中,Key就是原本Excel中的学号Value(就是右侧的马赛克区域)就是原本Excel中的姓名;还可以从上图的标题中看到,这个字典共有32elements,也就是对应着原本Excel32位同学的信息。

相关文章
|
3月前
|
数据采集 Web App开发 数据可视化
Python零基础爬取东方财富网股票行情数据指南
东方财富网数据稳定、反爬宽松,适合爬虫入门。本文详解使用Python抓取股票行情数据,涵盖请求发送、HTML解析、动态加载处理、代理IP切换及数据可视化,助你快速掌握金融数据爬取技能。
1812 1
|
3月前
|
存储 JavaScript Java
(Python基础)新时代语言!一起学习Python吧!(四):dict字典和set类型;切片类型、列表生成式;map和reduce迭代器;filter过滤函数、sorted排序函数;lambda函数
dict字典 Python内置了字典:dict的支持,dict全称dictionary,在其他语言中也称为map,使用键-值(key-value)存储,具有极快的查找速度。 我们可以通过声明JS对象一样的方式声明dict
277 1
|
3月前
|
Java 数据挖掘 数据处理
(Pandas)Python做数据处理必选框架之一!(一):介绍Pandas中的两个数据结构;刨析Series:如何访问数据;数据去重、取众数、总和、标准差、方差、平均值等;判断缺失值、获取索引...
Pandas 是一个开源的数据分析和数据处理库,它是基于 Python 编程语言的。 Pandas 提供了易于使用的数据结构和数据分析工具,特别适用于处理结构化数据,如表格型数据(类似于Excel表格)。 Pandas 是数据科学和分析领域中常用的工具之一,它使得用户能够轻松地从各种数据源中导入数据,并对数据进行高效的操作和分析。 Pandas 主要引入了两种新的数据结构:Series 和 DataFrame。
491 0
|
3月前
|
JSON 算法 API
Python采集淘宝商品评论API接口及JSON数据返回全程指南
Python采集淘宝商品评论API接口及JSON数据返回全程指南
|
3月前
|
JSON API 数据安全/隐私保护
Python采集淘宝拍立淘按图搜索API接口及JSON数据返回全流程指南
通过以上流程,可实现淘宝拍立淘按图搜索的完整调用链路,并获取结构化的JSON商品数据,支撑电商比价、智能推荐等业务场景。
|
3月前
|
人工智能 Java Linux
Python高效实现Excel转PDF:无Office依赖的轻量化方案
本文介绍无Office依赖的Python方案,利用Spire.XLS、python-office、Aspose.Cells等库实现Excel与PDF高效互转。支持跨平台部署、批量处理、格式精准控制,适用于服务器环境及自动化办公场景,提升转换效率与系统稳定性。
480 7
|
3月前
|
机器学习/深度学习 监控 数据挖掘
Python 高效清理 Excel 空白行列:从原理到实战
本文介绍如何使用Python的openpyxl库自动清理Excel中的空白行列。通过代码实现高效识别并删除无数据的行与列,解决文件臃肿、读取错误等问题,提升数据处理效率与准确性,适用于各类批量Excel清理任务。
441 0
|
6月前
|
Python
如何根据Excel某列数据为依据分成一个新的工作表
在处理Excel数据时,我们常需要根据列值将数据分到不同的工作表或文件中。本文通过Python和VBA两种方法实现该操作:使用Python的`pandas`库按年级拆分为多个文件,再通过VBA宏按班级生成新的工作表,帮助高效整理复杂数据。
|
6月前
|
数据采集 数据可视化 数据挖掘
用 Excel+Power Query 做电商数据分析:从 “每天加班整理数据” 到 “一键生成报表” 的配置教程
在电商运营中,数据是增长的关键驱动力。然而,传统的手工数据处理方式效率低下,耗费大量时间且易出错。本文介绍如何利用 Excel 中的 Power Query 工具,自动化完成电商数据的采集、清洗与分析,大幅提升数据处理效率。通过某美妆电商的实战案例,详细拆解从多平台数据整合到可视化报表生成的全流程,帮助电商从业者摆脱繁琐操作,聚焦业务增长,实现数据驱动的高效运营。
|
8月前
|
存储 安全 大数据
网安工程师必看!AiPy解决fscan扫描数据整理难题—多种信息快速分拣+Excel结构化存储方案
作为一名安全测试工程师,分析fscan扫描结果曾是繁琐的手动活:从海量日志中提取开放端口、漏洞信息和主机数据,耗时又易错。但现在,借助AiPy开发的GUI解析工具,只需喝杯奶茶的时间,即可将[PORT]、[SERVICE]、[VULN]、[HOST]等关键信息智能分类,并生成三份清晰的Excel报表。告别手动整理,大幅提升效率!在安全行业,工具党正碾压手动党。掌握AiPy,把时间留给真正的攻防实战!官网链接:https://www.aipyaipy.com,解锁更多用法!

推荐镜像

更多