【网络篇】第九篇——多线程版的TCP网络程序

简介: 【网络篇】第九篇——多线程版的TCP网络程序

多进程与多线程对比


多进程


优点

  • 可以处理多个用户
  • 易于边写
  • 稳定,因为进程具有独立性

缺点

  • 连接来了之后才创建进程,性能太低
  • 多进程服务器特别吃资源,而且同时服务的客户有上限,上限也很容易达到
  • 进程越多,CPU在调度时选择一个进程的周期会变长,客户等待的时间就变长。也就是切换成本大,影响性能。

多线程


多线程版本的程序同样也有多进程版本的几个缺点,但是相对于进程来说,创建线程的代价要小很多,而且调度线程比调度进程的粒度要小,这样就可以降低成本,提高性能。

但是线程还有一个缺点就是线程不稳定,一个线程的退出会导致主线程直接退出。


总结一下就是,进程的开销要远远大于线程,所以,如果需要同时为较多的客户机提供服务,则不推荐使用多进程;如果单个服务执行体需要消耗较多的CPU资源,比如需要进行大规模或长时间的数据运算或文件访问,则进程较为安全。


不论是多进程还是多线程都是来了连接请求之后才创建进程或线程,这个问题我们可以用进程池和线程池来解决。

多线程版的TCP网络程序


当服务进程调用accept函数获取到一个新连接后,就可以直接创建一个线程,让该线程为对应客户端提供服务。

当然,主线程(服务进程)创建出新线程后,也是需要等待新线程退出的,否则也会造成类似于僵尸进程这样的问题。但对于线程来说,如果不想让主线程等待新线程退出,可以让创建出来的新线程调用pthread_detach函数进行线程分离,当这个线程退出时系统会自动回收该线程所对应的资源。此时主线程(服务进程)就可以继续调用accept函数获取新连接,而让新线程去服务对应的客户端。

各个线程共享同一张文件描述符表

文件描述符表维护的是进程与文件之间的对应关系,因此一个进程对应一张文件描述符表。而主线程创建出来的新线程依旧属于这个进程,因此创建线程时并不会为该线程创建独立的文件描述符表,所有的线程看到的都是同一张文件描述符表。

因此当服务进程(主线程)调用accept函数获取到一个文件描述符后,其他创建的新线程是能够直接访问这个文件描述符的。


需要注意的是,虽然新线程能够直接访问主线程accept上来的文件描述符,但此时新线程并不知道它所服务的客户端对应的是哪一个文件描述符,因此主线程创建新线程后需要告诉新线程对应应该访问的文件描述符的值,也就是告诉每个新线程在服务客户端时,应该对哪一个套接字进行操作。

参数结构体

实际新线程在为客户端提供服务时就是调用Service函数,而调用Service函数时是需要传入三个参数的,分别是客户端对应的套接字、IP地址和端口号。因此主线程创建新线程时需要给新线程传入三个参数,而实际在调用pthread_create函数创建新线程时,只能传入一个类型为void*的参数。


这时我们可以设计一个参数结构体Param,此时这三个参数就可以放到Param结构体当中,当主线程创建新线程时就可以定义一个Param对象,将客户端对应的套接字、IP地址和端口号设计进这个Param对象当中,然后将Param对象的地址作为新线程执行例程的参数进行传入。


此时新线程在执行例程当中再将这个void*类型的参数强转为Param*类型,然后就能够拿到客户端对应的套接字,IP地址和端口号,进而调用Service函数为对应客户端提供服务。

class Param
{
public:
  Param(int sock, std::string ip, int port)
    : _sock(sock)
    , _ip(ip)
    , _port(port)
  {}
  ~Param()
  {}
public:
  int _sock;
  std::string _ip;
  int _port;
};

文件描述符关闭的问题

由于此时所有线程看到的都是同一张文件描述符表,因此当某个线程要对这张文件描述符表做某种操作时,不仅要考虑当前线程,还要考虑其他线程。

  • 对于主线程accept上来的文件描述符,主线程不能对其进行关闭操作,该文件描述符的关闭操作应该又新线程来执行。因为是新线程为客户端提供服务的,只有当新线程为客户端提供的服务结束后才能将该文件描述符关闭。
  • 对于监听套接字,虽然创建出来的新线程不必关心监听套接字,但新线程不能将监听套接字对应的文件描述符关闭,否则主线程就无法从监听套接字当中获取新连接了。

Service函数定义为静态成员函数

由于调用pthread_create函数创建线程时,新线程的执行例程是一个参数为void*,返回值为void*的函数。如果我们要将这个执行例程定义到类内,就需要将其定义为静态成员函数,否则这个执行例程的第一个参数是隐藏的this指针。


在线程的执行例程当中会调用Service函数,由于执行例程是静态成员函数,静态成员函数无法调用非静态成员函数,因此我们需要将Service函数定义为静态成员函数。恰好Service函数内部进行的操作都是与类无关的,因此我们直接在Service函数前面加上一个static即可。

class TcpServer
{
public:
  static void* HandlerRequest(void* arg)
  {
    pthread_detach(pthread_self()); //分离线程
    //int sock = *(int*)arg;
    Param* p = (Param*)arg;
    Service(p->_sock, p->_ip, p->_port); //线程为客户端提供服务
    delete p; //释放参数占用的堆空间
    return nullptr;
  }
  void Start()
  {
    for (;;){
      //获取连接
      struct sockaddr_in peer;
      memset(&peer, '\0', sizeof(peer));
      socklen_t len = sizeof(peer);
      int sock = accept(_listen_sock, (struct sockaddr*)&peer, &len);
      if (sock < 0){
        std::cerr << "accept error, continue next" << std::endl;
        continue;
      }
      std::string client_ip = inet_ntoa(peer.sin_addr);
      int client_port = ntohs(peer.sin_port);
      std::cout << "get a new link->" << sock << " [" << client_ip << "]:" << client_port << std::endl;
      Param* p = new Param(sock, client_ip, client_port);
      pthread_t tid;
      pthread_create(&tid, nullptr, HandlerRequest, p);
    }
  }
private:
  int _listen_sock; //监听套接字
  int _port; //端口号
};

代码测试

此时我们再重新编译服务端代码,由于代码当中用到了多线程,因此编译时需要携带上-pthread选项。此外,由于我们现在要监测的是一个个的线程,因此在监控时使用的不再是ps -axj命令,而是ps -aL命令。

while :; do ps -aL|head -1&&ps -aL|grep tcp_server;echo "####################";sleep 1;done

运行服务端,通过监控可以看到,此时只有一个服务线程,该服务线程就是主线程,它现在在等待客户端的连接到来。

image.png

当一个客户端连接到服务端后,此时主线程就会为该客户端构建一个参数结构体,然后创建一个新线程,将该参数结构体的地址作为参数传递给这个新线程,此时该新线程就能够从这个参数结构体当中提取出对应的参数,然后调用Service函数为该客户端提供服务,因此在监控当中显示了两个线程。

image.png

当第二个客户端发来连接请求时,主线程会进行相同的操作,最终再创建出一个新线程为该客户端提供服务,此时服务端当中就有了三个线程。

image.png

由于为这两个客户端提供服务的也是两个不同的执行流,因此这两个客户端可以同时享受服务端提供的服务,它们发送给服务端的消息也都能够在服务端进行打印,并且这两个客户端也都能够收到服务端的回显数据。

image.png

此时无论有多少个客户端发来连接请求,在服务端都会创建出相应数量的新线程为对应客户端提供服务,而当客户端一个个退出后,为其提供服务的新线程也就会相继退出,最终就只剩下最初的主线程仍在等待新连接的到来。

相关文章
|
7月前
|
负载均衡 算法 安全
基于Reactor模式的高性能网络库之线程池组件设计篇
EventLoopThreadPool 是 Reactor 模式中实现“一个主线程 + 多个工作线程”的关键组件,用于高效管理多个 EventLoop 并在多核 CPU 上分担高并发 I/O 压力。通过封装 Thread 类和 EventLoopThread,实现线程创建、管理和事件循环的调度,形成线程池结构。每个 EventLoopThread 管理一个子线程与对应的 EventLoop(subloop),主线程(base loop)通过负载均衡算法将任务派发至各 subloop,从而提升系统性能与并发处理能力。
407 3
|
9月前
|
域名解析 网络协议 安全
计算机网络TCP/IP四层模型
本文介绍了TCP/IP模型的四层结构及其与OSI模型的对比。网络接口层负责物理网络接口,处理MAC地址和帧传输;网络层管理IP地址和路由选择,确保数据包准确送达;传输层提供端到端通信,支持可靠(TCP)或不可靠(UDP)传输;应用层直接面向用户,提供如HTTP、FTP等服务。此外,还详细描述了数据封装与解封装过程,以及两模型在层次划分上的差异。
2031 13
|
4月前
|
JSON 网络协议 安全
【Java】(10)进程与线程的关系、Tread类;讲解基本线程安全、网络编程内容;JSON序列化与反序列化
几乎所有的操作系统都支持进程的概念,进程是处于运行过程中的程序,并且具有一定的独立功能,进程是系统进行资源分配和调度的一个独立单位一般而言,进程包含如下三个特征。独立性动态性并发性。
256 1
|
4月前
|
JSON 网络协议 安全
【Java基础】(1)进程与线程的关系、Tread类;讲解基本线程安全、网络编程内容;JSON序列化与反序列化
几乎所有的操作系统都支持进程的概念,进程是处于运行过程中的程序,并且具有一定的独立功能,进程是系统进行资源分配和调度的一个独立单位一般而言,进程包含如下三个特征。独立性动态性并发性。
269 1
|
9月前
|
Kubernetes Linux Go
使用 Uber automaxprocs 正确设置 Go 程序线程数
`automaxprocs` 包就是专门用来解决此问题的,并且用法非常简单,只需要使用匿名导入的方式 `import _ "go.uber.org/automaxprocs"` 一行代码即可搞定。
409 78
|
11月前
|
网络协议 物联网
VB6网络通信软件上位机开发,TCP网络通信,读写数据并处理,完整源码下载
本文介绍使用VB6开发网络通信上位机客户端程序,涵盖Winsock控件的引入与使用,包括连接服务端、发送数据(如通过`Winsock1.SendData`方法)及接收数据(利用`Winsock1_DataArrival`事件)。代码实现TCP网络通信,可读写并处理16进制数据,适用于自动化和工业控制领域。提供完整源码下载,适合学习VB6网络程序开发。 下载链接:[完整源码](http://xzios.cn:86/WJGL/DownLoadDetial?Id=20)
412 12
|
11月前
|
存储 网络协议 安全
Java网络编程,多线程,IO流综合小项目一一ChatBoxes
**项目介绍**:本项目实现了一个基于TCP协议的C/S架构控制台聊天室,支持局域网内多客户端同时聊天。用户需注册并登录,用户名唯一,密码格式为字母开头加纯数字。登录后可实时聊天,服务端负责验证用户信息并转发消息。 **项目亮点**: - **C/S架构**:客户端与服务端通过TCP连接通信。 - **多线程**:采用多线程处理多个客户端的并发请求,确保实时交互。 - **IO流**:使用BufferedReader和BufferedWriter进行数据传输,确保高效稳定的通信。 - **线程安全**:通过同步代码块和锁机制保证共享数据的安全性。
497 23
|
负载均衡 网络协议 算法
不为人知的网络编程(十九):能Ping通,TCP就一定能连接和通信吗?
这网络层就像搭积木一样,上层协议都是基于下层协议搭出来的。不管是ping(用了ICMP协议)还是tcp本质上都是基于网络层IP协议的数据包,而到了物理层,都是二进制01串,都走网卡发出去了。 如果网络环境没发生变化,目的地又一样,那按道理说他们走的网络路径应该是一样的,什么情况下会不同呢? 我们就从路由这个话题聊起吧。
412 4
不为人知的网络编程(十九):能Ping通,TCP就一定能连接和通信吗?
|
12月前
|
网络协议 测试技术 Linux
Golang 实现轻量、快速的基于 Reactor 模式的非阻塞 TCP 网络库
gev 是一个基于 epoll 和 kqueue 实现的高性能事件循环库,适用于 Linux 和 macOS(Windows 暂不支持)。它支持多核多线程、动态扩容的 Ring Buffer 读写缓冲区、异步读写和 SO_REUSEPORT 端口重用。gev 使用少量 goroutine,监听连接并处理读写事件。性能测试显示其在不同配置下表现优异。安装命令:`go get -u github.com/Allenxuxu/gev`。
296 0
|
网络协议
TCP报文格式全解析:网络小白变高手的必读指南
本文深入解析TCP报文格式,涵盖源端口、目的端口、序号、确认序号、首部长度、标志字段、窗口大小、检验和、紧急指针及选项字段。每个字段的作用和意义详尽说明,帮助理解TCP协议如何确保可靠的数据传输,是互联网通信的基石。通过学习这些内容,读者可以更好地掌握TCP的工作原理及其在网络中的应用。