np.linspace、 np.arange、np.logspace三个函数的对比分析--python学习笔记24

简介: np.linspace、 np.arange、np.logspace三个函数的对比分析--python学习笔记24

英语好的童鞋们,直接看后面的英文官方解释,我就不班门弄斧了。英文不好的,可以看下我的中文解释。


首先:

np.linspace
np.linspace(start, stop, num=50, endpoint=True, retstep=False, dtype=None)

参数解释:start,stop是开始,结束的数字,num是生成多少个数字,默认50个;endpoint是最后一个stop数字是否包含进去,默认包含;retstep,是两个数字间的间距,默认不显示;dtype默认。

小栗子:对比分析


import numpy as np
x1=np.linspace(1,100,endpoint=True,retstep=True);
x2=np.linspace(1,100,num=100,endpoint=True,retstep=True);
x3=np.linspace(1,100,,endpoint=False,retstep=True);
x4=np.linspace(1,100,endpoint=True,retstep=False);


其次,np.logspace,跟np.linspace很相似,多了一个base

np.logspace(start, stop, num=50, endpoint=True, base=10.0, dtype=None)

参数解释:base意思是取对数的时候log的下标;retstep这个参数没有了;

最后,np.arange

这个是比较常用的:


eg:

np.arange(3)
array([0, 1, 2])
np.arange(3.0)
array([ 0.,  1.,  2.])
np.arange(3,7)
array([3, 4, 5, 6])
np.arange(3,7,2)
array([3, 5])
'''
Signature: np.linspace(start, stop, num=50, endpoint=True, retstep=False, dtype=None)
Docstring:
Return evenly spaced numbers over a specified interval.
Returns `num` evenly spaced samples, calculated over the
interval [`start`, `stop`].
The endpoint of the interval can optionally be excluded.
Parameters
----------
start : scalar
    The starting value of the sequence.
stop : scalar
    The end value of the sequence, unless `endpoint` is set to False.
    In that case, the sequence consists of all but the last of ``num + 1``
    evenly spaced samples, so that `stop` is excluded.  Note that the step
    size changes when `endpoint` is False.
num : int, optional
    Number of samples to generate. Default is 50. Must be non-negative.
endpoint : bool, optional
    If True, `stop` is the last sample. Otherwise, it is not included.
    Default is True.
retstep : bool, optional
    If True, return (`samples`, `step`), where `step` is the spacing
    between samples.
dtype : dtype, optional
    The type of the output array.  If `dtype` is not given, infer the data
    type from the other input arguments.
    .. versionadded:: 1.9.0
Returns
-------
samples : ndarray
    There are `num` equally spaced samples in the closed interval
    ``[start, stop]`` or the half-open interval ``[start, stop)``
    (depending on whether `endpoint` is True or False).
step : float
    Only returned if `retstep` is True
    Size of spacing between samples.
See Also
--------
arange : Similar to `linspace`, but uses a step size (instead of the
         number of samples).
logspace : Samples uniformly distributed in log space.
Examples
--------
np.linspace(2.0, 3.0, num=5)
    array([ 2.  ,  2.25,  2.5 ,  2.75,  3.  ])
np.linspace(2.0, 3.0, num=5, endpoint=False)
    array([ 2. ,  2.2,  2.4,  2.6,  2.8])
np.linspace(2.0, 3.0, num=5, retstep=True)
    (array([ 2.  ,  2.25,  2.5 ,  2.75,  3.  ]), 0.25)
Graphical illustration:
import matplotlib.pyplot as plt
N = 8
y = np.zeros(N)
x1 = np.linspace(0, 10, N, endpoint=True)
x2 = np.linspace(0, 10, N, endpoint=False)
plt.plot(x1, y, 'o')
[<matplotlib.lines.Line2D object at 0x...>]
plt.plot(x2, y + 0.5, 'o')
[<matplotlib.lines.Line2D object at 0x...>]
plt.ylim([-0.5, 1])
(-0.5, 1)
plt.show()
'''
'''
'''
'''
Signature: np.logspace(start, stop, num=50, endpoint=True, base=10.0, dtype=None)
Docstring:
Return numbers spaced evenly on a log scale.
In linear space, the sequence starts at ``base ** start``
(`base` to the power of `start`) and ends with ``base ** stop``
(see `endpoint` below).
Parameters
----------
start : float
    ``base ** start`` is the starting value of the sequence.
stop : float
    ``base ** stop`` is the final value of the sequence, unless `endpoint`
    is False.  In that case, ``num + 1`` values are spaced over the
    interval in log-space, of which all but the last (a sequence of
    length ``num``) are returned.
num : integer, optional
    Number of samples to generate.  Default is 50.
endpoint : boolean, optional
    If true, `stop` is the last sample. Otherwise, it is not included.
    Default is True.
base : float, optional
    The base of the log space. The step size between the elements in
    ``ln(samples) / ln(base)`` (or ``log_base(samples)``) is uniform.
    Default is 10.0.
dtype : dtype
    The type of the output array.  If `dtype` is not given, infer the data
    type from the other input arguments.
Returns
-------
samples : ndarray
    `num` samples, equally spaced on a log scale.
See Also
--------
arange : Similar to linspace, with the step size specified instead of the
         number of samples. Note that, when used with a float endpoint, the
         endpoint may or may not be included.
linspace : Similar to logspace, but with the samples uniformly distributed
           in linear space, instead of log space.
Notes
-----
Logspace is equivalent to the code
y = np.linspace(start, stop, num=num, endpoint=endpoint)
# doctest: +SKIP
power(base, y).astype(dtype)
# doctest: +SKIP
Examples
--------
np.logspace(2.0, 3.0, num=4)
    array([  100.        ,   215.443469  ,   464.15888336,  1000.        ])
np.logspace(2.0, 3.0, num=4, endpoint=False)
    array([ 100.        ,  177.827941  ,  316.22776602,  562.34132519])
np.logspace(2.0, 3.0, num=4, base=2.0)
    array([ 4.        ,  5.0396842 ,  6.34960421,  8.        ])
Graphical illustration:
import matplotlib.pyplot as plt
N = 10
x1 = np.logspace(0.1, 1, N, endpoint=True)
x2 = np.logspace(0.1, 1, N, endpoint=False)
y = np.zeros(N)
plt.plot(x1, y, 'o')
[<matplotlib.lines.Line2D object at 0x...>]
plt.plot(x2, y + 0.5, 'o')
[<matplotlib.lines.Line2D object at 0x...>]
plt.ylim([-0.5, 1])
(-0.5, 1)
plt.show()
File:      c:\program files (x86)\python35-32\lib\site-packages\numpy\core\function_base.py
Type:      function
'''
'''
Docstring:
arange([start,] stop[, step,], dtype=None)
Return evenly spaced values within a given interval.
Values are generated within the half-open interval ``[start, stop)``
(in other words, the interval including `start` but excluding `stop`).
For integer arguments the function is equivalent to the Python built-in
`range <http://docs.python.org/lib/built-in-funcs.html>`_ function,
but returns an ndarray rather than a list.
When using a non-integer step, such as 0.1, the results will often not
be consistent.  It is better to use ``linspace`` for these cases.
Parameters
----------
start : number, optional
    Start of interval.  The interval includes this value.  The default
    start value is 0.
stop : number
    End of interval.  The interval does not include this value, except
    in some cases where `step` is not an integer and floating point
    round-off affects the length of `out`.
step : number, optional
    Spacing between values.  For any output `out`, this is the distance
    between two adjacent values, ``out[i+1] - out[i]``.  The default
    step size is 1.  If `step` is specified, `start` must also be given.
dtype : dtype
    The type of the output array.  If `dtype` is not given, infer the data
    type from the other input arguments.
Returns
-------
arange : ndarray
    Array of evenly spaced values.
    For floating point arguments, the length of the result is
    ``ceil((stop - start)/step)``.  Because of floating point overflow,
    this rule may result in the last element of `out` being greater
    than `stop`.
See Also
--------
linspace : Evenly spaced numbers with careful handling of endpoints.
ogrid: Arrays of evenly spaced numbers in N-dimensions.
mgrid: Grid-shaped arrays of evenly spaced numbers in N-dimensions.
Examples
--------
np.arange(3)
array([0, 1, 2])
np.arange(3.0)
array([ 0.,  1.,  2.])
np.arange(3,7)
array([3, 4, 5, 6])
np.arange(3,7,2)
array([3, 5])
'''




目录
相关文章
|
10天前
|
数据采集 缓存 定位技术
网络延迟对Python爬虫速度的影响分析
网络延迟对Python爬虫速度的影响分析
|
12天前
|
数据采集 存储 JSON
Python爬虫开发中的分析与方案制定
Python爬虫开发中的分析与方案制定
|
19天前
|
数据可视化 开发者 Python
Python GUI开发:Tkinter与PyQt的实战应用与对比分析
【10月更文挑战第26天】本文介绍了Python中两种常用的GUI工具包——Tkinter和PyQt。Tkinter内置于Python标准库,适合初学者快速上手,提供基本的GUI组件和方法。PyQt基于Qt库,功能强大且灵活,适用于创建复杂的GUI应用程序。通过实战示例和对比分析,帮助开发者选择合适的工具包以满足项目需求。
63 7
|
18天前
|
存储 数据处理 Python
Python科学计算:NumPy与SciPy的高效数据处理与分析
【10月更文挑战第27天】在科学计算和数据分析领域,Python凭借简洁的语法和强大的库支持广受欢迎。NumPy和SciPy作为Python科学计算的两大基石,提供了高效的数据处理和分析工具。NumPy的核心功能是N维数组对象(ndarray),支持高效的大型数据集操作;SciPy则在此基础上提供了线性代数、信号处理、优化和统计分析等多种科学计算工具。结合使用NumPy和SciPy,可以显著提升数据处理和分析的效率,使Python成为科学计算和数据分析的首选语言。
27 3
|
19天前
|
存储 机器学习/深度学习 算法
Python科学计算:NumPy与SciPy的高效数据处理与分析
【10月更文挑战第26天】NumPy和SciPy是Python科学计算领域的两大核心库。NumPy提供高效的多维数组对象和丰富的数学函数,而SciPy则在此基础上提供了更多高级的科学计算功能,如数值积分、优化和统计等。两者结合使Python在科学计算中具有极高的效率和广泛的应用。
34 2
|
21天前
|
测试技术 数据安全/隐私保护 Python
探索Python中的装饰器:简化和增强你的函数
【10月更文挑战第24天】在Python编程的海洋中,装饰器是那把可以令你的代码更简洁、更强大的魔法棒。它们不仅能够扩展函数的功能,还能保持代码的整洁性。本文将带你深入了解装饰器的概念、实现方式以及如何通过它们来提升你的代码质量。让我们一起揭开装饰器的神秘面纱,学习如何用它们来打造更加优雅和高效的代码。
|
23天前
|
弹性计算 安全 数据处理
Python高手秘籍:列表推导式与Lambda函数的高效应用
列表推导式和Lambda函数是Python中强大的工具。列表推导式允许在一行代码中生成新列表,而Lambda函数则是用于简单操作的匿名函数。通过示例展示了如何使用这些工具进行数据处理和功能实现,包括生成偶数平方、展平二维列表、按长度排序单词等。这些工具在Python编程中具有高度的灵活性和实用性。
|
25天前
|
Python
python的时间操作time-函数介绍
【10月更文挑战第19天】 python模块time的函数使用介绍和使用。
27 4
|
24天前
|
数据采集 机器学习/深度学习 搜索推荐
Python自动化:关键词密度分析与搜索引擎优化
Python自动化:关键词密度分析与搜索引擎优化
|
25天前
|
数据可视化 算法 JavaScript
基于图论的时间序列数据平稳性与连通性分析:利用图形、数学和 Python 揭示时间序列数据中的隐藏模式
本文探讨了如何利用图论分析时间序列数据的平稳性和连通性。通过将时间序列数据转换为图结构,计算片段间的相似性,并构建连通图,可以揭示数据中的隐藏模式。文章介绍了平稳性的概念,提出了基于图的平稳性度量,并展示了图分区在可视化平稳性中的应用。此外,还模拟了不同平稳性和非平稳性程度的信号,分析了图度量的变化,为时间序列数据分析提供了新视角。
53 0
基于图论的时间序列数据平稳性与连通性分析:利用图形、数学和 Python 揭示时间序列数据中的隐藏模式