Hamilton问题求解-最近邻点法和最近插入法(Python实现)

简介: Hamilton问题求解-最近邻点法和最近插入法(Python实现)

Hamilton问题求解-最近邻点法和最近插入法

一、定义

1. 哈密顿通路

设G = < V , E >为一个图(有向图或者无向图)。G中经过的每个顶点一次且仅一次的通路称为哈密顿通路。(通路不一定回到起点,但一定穿过每个顶点一次且仅一次)

2. 哈密顿回路

设G = < V , E >为一个图(有向图或者无向图)。G中经过的每个顶点一次且仅一次的回路称为哈密顿回路。(回路要求穿过每个顶点一次后回到起点)

3. 性质

存在哈密顿通路(回路)的图一定是连通图

哈密顿通路是初级通路,哈密顿回路是初级回路

初级是通路(回路)指除了起点和终点之外,所有的顶点和边都互不相同的通路(回路)

若图G GG中存在哈密顿回路,则它一定存在哈密顿通路

只有哈密顿通路,无哈密顿回路的图不叫哈密顿图

二、判定定理

目前没有判定哈密顿图的简单充要条件

image.png

image.png

三、求解算法

1. 最近邻点法

算法思想:每次将离当前顶点最近的顶点加入,一般只能找到近似解,不能找到最优解

算法步骤

  • 从网络中找一个点做为起点
  • 从剩下的点中找一个离上一个点最近的点加入
  • 重复步骤2
  • 将最后加入的点与起点连接构成回路

2.最近插入法

最近插入法(Nearest Insertion)于1977年提出,用于解决TSP问题,可以得到相对最近邻点法更优的解。

算法步骤

image.png

四、Python源码实现

Hamilton.py

import numpy as np
class HamiltonUtil:
    def __init__(self, input_matrix):
        self.graph = input_matrix
        self.point_num = np.shape(self.graph)[0]
        self.HamSolve = []
        self.HamLength = 0
    def search_min(self, index, matrix):
        min_val = np.float('inf')
        for i in matrix:
            if self.graph[index][i - 1] < min_val:
                min_val = self.graph[index][i - 1]
        return min_val
    def find_match_vex(self, index, match_val):
        ret_index = 0
        for i in self.graph[index]:
            if i != match_val:
                ret_index += 1
            else:
                break
        return ret_index
    def find_index(self, vec, value):
        index = 0
        for i in vec:
            if i != value:
                index += 1
            else:
                break
        return index
    def clear_stack(self):
        self.HamSolve = []
        self.HamLength = 0
    def neibor_point(self):
        self.clear_stack()
        start = 1
        V = np.arange(1, self.point_num + 1, 1)
        self.HamSolve.append(start)
        V = np.delete(V, start - 1)
        BetweenPoint = start
        while np.shape(V)[0] != 0:
            VWeight = self.search_min(BetweenPoint - 1, V)
            Next = self.find_match_vex(BetweenPoint - 1, VWeight) + 1
            self.HamSolve.append(Next)
            V = np.setdiff1d(V, Next)
            self.HamLength = self.HamLength + VWeight
            BetweenPoint = Next
        self.HamSolve.append(start)
        self.HamLength = self.HamLength + self.graph[Next - 1][start - 1]
    def nearest_insertion(self):
        self.clear_stack()
        start = 1
        V = np.arange(1, self.point_num + 1, 1)
        self.HamSolve.append(start)
        V = np.setdiff1d(V, self.HamSolve)
        BetweenPoint = start
        VWeight = self.search_min(BetweenPoint - 1, V)
        Next = self.find_match_vex(BetweenPoint - 1, VWeight) + 1
        self.HamSolve.append(Next)
        self.HamSolve.append(start)
        V = np.setdiff1d(V, Next)
        self.HamLength = self.HamLength + VWeight + self.graph[Next - 1][start - 1]
        BetweenPoint = Next
        while np.shape(V)[0] != 0:
            HamPoint = list(set(self.HamSolve))
            NearestPoint = 0
            NearWeight = np.zeros((len(HamPoint),), dtype=float)
            NearPoint = np.zeros((len(HamPoint),), dtype=int)
            for i in range(len(HamPoint)):
                NearWeight[i] = self.search_min(HamPoint[i] - 1, V)
                NearPoint[i] = self.find_match_vex(HamPoint[i] - 1, NearWeight[i]) + 1
            NearestPoint = NearPoint[self.find_index(NearWeight, np.min(NearWeight))]
            HamIncrement = np.zeros((len(self.HamSolve) - 1,), dtype=float)
            for i in range(len(self.HamSolve) - 1):
                HamIncrement[i] = self.graph[self.HamSolve[i] - 1][NearestPoint - 1] + \
                                  self.graph[NearestPoint - 1][self.HamSolve[i + 1] - 1] - \
                                  self.graph[self.HamSolve[i] - 1][self.HamSolve[i + 1] - 1]
            MinHamIncrement = np.min(HamIncrement)
            InsertPoint = self.find_index(HamIncrement, MinHamIncrement) + 1
            self.HamSolve.insert(InsertPoint, NearestPoint)
            self.HamLength += MinHamIncrement
            V = np.setdiff1d(V, NearestPoint)

五、运行测试实例

main.py

from Hamilton import HamiltonUtil
import numpy as np
if __name__ == '__main__':
    E = np.array([[np.float('inf'), 10, 6, 8, 7, 15],
                  [10, np.float('inf'), 5, 20, 15, 16],
                  [6, 5, np.float('inf'), 14, 7, 8],
                  [8, 20, 14, np.float('inf'), 4, 12],
                  [7, 15, 7, 4, np.float('inf'), 6],
                  [15, 16, 8, 12, 6, np.float('inf')]], dtype=float)
    neibor_point = HamiltonUtil(E)
    # 最邻近点法
    neibor_point.neibor_point()
    print(neibor_point.HamSolve)
    print(neibor_point.HamLength)
    E = np.array([[np.float('inf'), 10, 6, 8, 7, 15],
                  [10, np.float('inf'), 5, 20, 15, 16],
                  [6, 5, np.float('inf'), 14, 7, 8],
                  [8, 20, 14, np.float('inf'), 4, 12],
                  [7, 15, 7, 4, np.float('inf'), 6],
                  [15, 16, 8, 12, 6, np.float('inf')]], dtype=float)
    nearest_insertion = HamiltonUtil(E)
    # 最近插值法
    nearest_insertion.nearest_insertion()
    print(nearest_insertion.HamSolve)
    print(nearest_insertion.HamLength)
相关文章
|
7月前
|
算法 数据可视化 数据挖掘
使用Python实现层次聚类算法
使用Python实现层次聚类算法
118 1
|
5月前
|
算法 开发者 Python
惊呆了!Python算法设计与分析,分治法、贪心、动态规划...这些你都会了吗?不会?那还不快来学!
【7月更文挑战第10天】探索编程巅峰,算法至关重要。Python以其易读性成为学习算法的首选。分治法,如归并排序,将大问题拆解;贪心算法,如找零问题,每步求局部最优;动态规划,如斐波那契数列,利用子问题解。通过示例代码,理解并掌握这些算法,提升编程技能,面对挑战更加从容。动手实践,体验算法的神奇力量吧!
76 8
|
5月前
|
存储 算法 Python
震撼!Python算法设计与分析,分治法、贪心、动态规划...这些经典算法如何改变你的编程世界!
【7月更文挑战第9天】在Python的算法天地,分治、贪心、动态规划三巨头揭示了解题的智慧。分治如归并排序,将大问题拆解为小部分解决;贪心算法以局部最优求全局,如Prim的最小生成树;动态规划通过存储子问题解避免重复计算,如斐波那契数列。掌握这些,将重塑你的编程思维,点亮技术之路。
82 1
|
6月前
|
算法 C语言 Python
简单遗传算法优化简单一元函数(python)
简单遗传算法优化简单一元函数(python)
53 0
|
7月前
|
机器学习/深度学习 Python
python实现判别分析
python实现判别分析
84 1
|
7月前
|
机器学习/深度学习 算法 数据可视化
使用Python实现决策树算法
使用Python实现决策树算法
76 2
|
7月前
|
算法 数据可视化 Python
使用Python实现K近邻算法
使用Python实现K近邻算法
59 3
|
7月前
|
算法 Python
python实现井字棋小游戏(使用蒙特卡洛搜索树进行训练)
python实现井字棋小游戏(使用蒙特卡洛搜索树进行训练)
114 1
|
算法 数据可视化 数据库
Apriori关联算法讲解以及利用Python实现算法软件设计
Apriori关联算法讲解以及利用Python实现算法软件设计
185 1
Apriori关联算法讲解以及利用Python实现算法软件设计
|
机器学习/深度学习 算法 数据挖掘
决策树算法及python实现
决策树算法及python实现
124 0
下一篇
DataWorks