python实现井字棋小游戏(使用蒙特卡洛搜索树进行训练)

简介: python实现井字棋小游戏(使用蒙特卡洛搜索树进行训练)

需要源码请点赞关注收藏后评论区留言或私信博主

蒙特卡洛搜索树是一类算法的统称,它适用于零和且确定环境的游戏,现在用蒙特卡洛搜索树算法对井字棋进行训练。

训练要求将模拟次数设定为2000次,即每个状态都模拟2000次到达终点,到到达胜利叶子节点则回溯得一分,失败或平局则不得分。

代码运行效果如下

 

部分代码如下

# 深度强化学习——原理、算法与PyTorch实战,代码名称:代31-例8.6-基于蒙特卡洛树的井字棋实例.py
import numpy as np
import sys
import math
import random
# 初始化环境
class environment():
    def __init__(self):
        self.start_env = np.array([[0] * 3] * 3)
class State(object):
    def __init__(self):
        self.current_env = [[]]
        self.current_value = 0
        self.current_round_index = 0
        self.cumulative_choices = [[]]
        self.available_choice = [[]]
    # 定义结束情况
    def is_end(self):
        tiaojian = True
        for i in range(0, 3):
            for j in range(0, 3):
                if self.current_env[i][j] == 0:
                    tiaojian = False
        for i in range(0, 3):
            if (np.array(self.current_env)[i] == np.array([1, 1, 1])).all() or (
                    np.array(self.current_env)[i] == np.array([2, 2, 2])).all():
                tiaojian = True
        if (np.array(self.current_env)[:, 0] == np.array([1, 1, 1])).all() or (
                np.array(self.current_env)[:, 0] == np.array([2, 2, 2])).all() or (
                np.array(self.current_env)[:, 1] == np.array([1, 1, 1])).all() or (
                np.array(self.current_env)[:, 1] == np.array([2, 2, 2])).all() or (
                np.array(self.current_env)[:, 2] == np.array([1, 1, 1])).all() or (
                np.array(self.current_env)[:, 2] == np.array([2, 2, 2])).all():
            tiaojian = True
        elif np.array(self.current_env)[0, 0] == np.array(self.current_env)[1, 1] == np.array(self.current_env)[
            2, 2] != 0:
            tiaojian = True
        elif np.array(self.current_env)[0, 2] == np.array(self.current_env)[1, 1] == np.array(self.current_env)[
            2, 0] != 0:
            tiaojian = True
        return tiaojian
    # 定义自家胜利情况
    def i_win(self):
        tiaojian = False
        for i in range(0, 3):
            if ((np.array(self.current_env)[i] == np.array([1, 1, 1])).all()):
                tiaojian = True
        if (np.array(self.current_env)[:, 0] == np.array([1, 1, 1])).all() or (
                np.array(self.current_env)[:, 1] == np.array([1, 1, 1])).all() or (
                np.array(self.current_env)[:, 2] == np.array([1, 1, 1])).all():
            tiaojian = True
        if np.array(self.current_env)[0, 0] == np.array(self.current_env)[1, 1] == np.array(self.current_env)[
            2, 2] == 1:
            tiaojian = True
        if np.array(self.current_env)[0, 2] == np.array(self.current_env)[1, 1] == np.array(self.current_env)[
            2, 0] == 1:
            tiaojian = True
        return tiaojian
    # 定义自家失败情况
    def i_lose(self):
        tiaojian = False
        for i in range(0, 3):
            if ((np.array(self.current_env)[i] == np.array([2, 2, 2])).all()):
                tiaojian = True
        if (np.array(self.current_env)[:, 0] == np.array([2, 2, 2])).all() or (
                np.array(self.current_env)[:, 1] == np.array([2, 2, 2])).all() or (
                np.array(self.current_env)[:, 2] == np.array([2, 2, 2])).all():
            tiaojian = True
        if np.array(self.current_env)[0, 0] == np.array(self.current_env)[1, 1] == np.array(self.current_env)[
            2, 2] == 2:
            tiaojian = True
        if np.array(self.current_env)[0, 2] == np.array(self.current_env)[1, 1] == np.array(self.current_env)[
            2, 0] == 2:
            tiaojian = True
        return tiaojian
    # 设置/获取可用动作
    def set_available_choice(self, choice):
        self.available_choice = choice
    def get_available_choice(self):
        return self.available_choice
    # 设置/获取当前环境
    def get_current_env(self):
        return self.current_env
    def set_current_env(self, env):
        self.current_env = env
    # 设置/获取累计奖赏
    def get_current_value(self):
        return self.current_value
    def set_current_value(self, value):
        self.current_value = value
    def get_current_round_index(self):
        return self.current_round_index
    def set_current_round_index(self, turn):
        self.current_round_index = turn
    # 设置/获取累积动作
    def get_cumulative_choices(self):
        return self.cumulative_choices
    def set_cumulative_choices(self, choices):
        self.cumulative_choices = choices
    # 判断是否结束
    def is_terminal(self):
        # The round index starts from 1 to max round number
        return self.is_end()
    # 计算累计奖赏
    def compute_reward(self):
        return self.current_value
    # 随机策略得到下一状态
    def get_next_state_with_random_choice(self):
        a = np.array([[0] * 3] * 3)
        b = [0] * len(self.available_choice)
        random_choice = random.choice([choice for choice in self.available_choice])
        next_state = State()
        next_state.set_current_round_index(self.current_round_index + 1)
        next_state.set_cumulative_choices(self.cumulative_choices + [random_choice])
        for i in range(0, len(self.available_choice)):
            b[i] = self.available_choice[i]
        next_state.available_choice = b
        next_state.available_choice.remove(random_choice)
        if next_state.current_round_index != 0 and next_state.current_round_index % 2 == 0:
            for i in range(0, 3):
                for j in range(0, 3):
                    a[i][j] = self.current_env[i][j]
            a[random_choice[0]][random_choice[1]] = 1
            next_state.set_current_env(a)
        if next_state.current_round_index != 0 and next_state.current_round_index % 2 == 1:
            for i in range(0, 3):
                for j in range(0, 3):
                    a[i][j] = self.current_env[i][j]
            a[random_choice[0]][random_choice[1]] = 2
            next_state.set_current_env(a)
        if next_state.i_win():
            next_state.set_current_value(1)
        if next_state.i_lose():
            next_state.set_current_value(-0.5)
        if next_state.i_lose() != True and next_state.i_win() != True:
            next_state.set_current_value(0)
        return next_state
    def __repr__(self):
        return "State: {}, value: {},  choices: {}".format(hash(self), self.current_value,
                                                           self.available_choice)
# 建立节点
class Node(object):
    def __init__(self):
        self.env = [[]]
        self.parent = None
        self.children = []
        self.visit_times = 0
        self.quality_value = 0.0
        self.state = None
    def avanum(self):
        num = 0
        a = self.get_state().current_env
        for i in range(0, 3):
            for j in range(0, 3):
                if a[i][j] == 0:
                    num += 1
        return num
    def set_state(self, state):
        self.state = state
    def get_state(self):
        return self.state
    def get_parent(self):
        return self.parent
    def set_parent(self, parent):
        self.parent = parent
    def get_children(self):
        return self.children
    def get_visit_times(self):
        return self.visit_times
    def set_visit_times(self, times):
        self.visit_times = times
    def visit_times_add_one(self):
        self.visit_times += 1
    def get_quality_value(self):
        return self.quality_value
    def set_quality_value(self, value):
        self.quality_value = value
    def quality_value_add_n(self, n):
        self.quality_value += n
    def is_all_expand(self):
        return len(self.children) == self.avanum()
    def add_child(self, sub_node):
        sub_node.set_parent(self)
        self.children.append(sub_node)
    def __repr__(self):
        return "Node: {}, Q/N: {}/{}, state: {}".format(hash(self), self.quality_value, self.visit_times, self.state)
# *************************************
# 搜索树策略
def tree_policy(node):
    # Check if the current node is the leaf node
    while node.get_state().is_terminal() == False:
        if node.is_all_expand():
            node_best = best_child(node, True)
        else:
            # Return the new sub node
            sub_node = expand(node)
            return sub_node
        # Return the leaf node
        return node_best
# 默认策略
def default_policy(node):
    # Get the state of the game
    current_state = node.get_state()
    # Run until the game over
    while current_state.is_terminal() == False:
        # Pick one random action to play and get next state
        current_state = current_state.get_next_state_with_random_choice()
    final_state_reward = current_state.compute_reward()
    return final_state_reward
# 扩展
def expand(node):
    tried_sub_node_states = [sub_node.get_state().current_env for sub_node in node.get_children()]
    # Check until get the new state which has the different action from others
    noin = False
    while noin == False:
        noin = True
        new_state = node.get_state().get_next_state_with_random_choice()
        for i in range(0, len(tried_sub_node_states)):
            if (new_state.current_env == tried_sub_node_states[i]).all():
                noin = False
    sub_node = Node()
    sub_node.set_state(new_state)
    node.add_child(sub_node)
    return sub_node
def best_child(node, is_exploration):
    # TODO: Use the min float value
    best_score = -sys.maxsize
    best_sub_node = None
    # Travel all sub nodes to find the best one
    for sub_node in node.get_children():
        # Ignore exploration for inference
        if is_exploration:
            C = 1 / math.sqrt(2.0)
        else:
            C = 0.0
        # UCB = quality / times + C * sqrt(2 * ln(total_times) / times)
        left = sub_node.get_quality_value() / sub_node.get_visit_times()
        right = 2.0 * math.log(node.get_visit_times()) / sub_node.get_visit_times()
        score = left + C * math.sqrt(right)
        if score > best_score:
            best_sub_node = sub_node
            best_score = score
    return best_sub_node
# 回传
def backup(node, reward):
    # Update util the root node
    while node != None:
        # Update the visit times
        node.visit_times_add_one()
        # Update the quality value
        node.quality_value_add_n(reward)
        # Change the node to the parent node
        node = node.parent
# 蒙特卡洛搜索树算法
def monte_carlo_tree_search(node):
    computation_budget = 4000
    # Run as much as possible under the computation budget
    for i in range(computation_budget):
        # 1. Find the best node to expand
        expand_node = tree_policy(node)
        # 2. Random run to add node and get reward
        reward = default_policy(expand_node)
        # 3. Update all passing nodes with reward
        backup(expand_node, reward)
    # N. Get the best next node
    best_next_node = best_child(node, False)
    a = [[sub_node.quality_value, sub_node.get_state().current_env] for sub_node in node.get_children()]
    print(a)
    return best_next_node
# *************************************
def main():
    # Create the initialized state and initialized node
    init_state = State()
    init_state.set_current_env(np.array([[0] * 3] * 3))
    init_state.set_current_round_index(1)
    init_state.set_available_choice([[0, 0], [0, 1], [0, 2], [1, 0], [1, 1], [1, 2], [2, 0], [2, 1], [2, 2]])
    init_node = Node()
    init_node.state = init_state
    init_env = environment()
    current_node = init_node
    # Set the rounds to play
    d = 0
    while (current_node.get_state().is_terminal() != True):
        if d % 2 == 0:
            print("Play round: {}".format(d + 1))
            print("你好,这是我下的步骤,来与我一战")
            current_node = monte_carlo_tree_search(current_node)
            print(current_node.get_state().current_env)
        else:
            new = Node()
            bb = State()
            new.set_state(bb)
            print("你的回合,请君下棋")
            n = 3
            a = [[0] * n] * n
            for i in range(n):
                a[i] = input().split(" ")
            for i in range(0, 3):
                for j in range(0, 3):
                    a[i][j] = int(a[i][j])
        = current_node.get_state().current_round_index + 1
            current_node = new
        d += 1
    if current_node.get_state().i_win():
        print("我赢了!你真菜")
    if current_node.get_state().i_lose():
        print("我输了,快给我调力度")
    if current_node.get_state().i_win() != True and current_node.get_state().i_lose() != True:
        print("平局,你还不错")
if __name__ == "__main__":
    main()
相关文章
|
20天前
|
机器学习/深度学习 数据可视化 TensorFlow
使用Python实现深度学习模型的分布式训练
使用Python实现深度学习模型的分布式训练
164 73
|
3月前
|
Python
蓝桥杯练习题(一):Python组之入门训练题
这篇文章是关于蓝桥杯Python组的入门训练题,包括Fibonacci数列、圆的面积、序列求和和A+B问题的具体代码实现和样例输出。
154 0
|
23天前
|
数据可视化 算法 数据挖掘
Python量化投资实践:基于蒙特卡洛模拟的投资组合风险建模与分析
蒙特卡洛模拟是一种利用重复随机抽样解决确定性问题的计算方法,广泛应用于金融领域的不确定性建模和风险评估。本文介绍如何使用Python和EODHD API获取历史交易数据,通过模拟生成未来价格路径,分析投资风险与收益,包括VaR和CVaR计算,以辅助投资者制定合理决策。
69 15
|
2月前
|
机器学习/深度学习 自然语言处理 语音技术
Python在深度学习领域的应用,重点讲解了神经网络的基础概念、基本结构、训练过程及优化技巧
本文介绍了Python在深度学习领域的应用,重点讲解了神经网络的基础概念、基本结构、训练过程及优化技巧,并通过TensorFlow和PyTorch等库展示了实现神经网络的具体示例,涵盖图像识别、语音识别等多个应用场景。
72 8
|
2月前
|
Python
二分查找变种大赏!Python 中那些让你效率翻倍的搜索绝技!
二分查找是一种高效的搜索算法,适用于有序数组。其基本原理是通过不断比较中间元素来缩小搜索范围,从而快速找到目标值。常见的变种包括查找第一个等于目标值的元素、最后一个等于目标值的元素、第一个大于等于目标值的元素等。这些变种在实际应用中能够显著提高搜索效率,适用于各种复杂场景。
43 9
|
2月前
|
算法 数据处理 开发者
超越传统:Python二分查找的变种策略,让搜索效率再上新台阶!
本文介绍了二分查找及其几种Python实现的变种策略,包括经典二分查找、查找第一个等于给定值的元素、查找最后一个等于给定值的元素以及旋转有序数组的搜索。通过调整搜索条件和边界处理,这些变种策略能够适应更复杂的搜索场景,提升搜索效率和应用灵活性。
39 5
|
3月前
|
存储 机器学习/深度学习 算法
蓝桥杯练习题(三):Python组之算法训练提高综合五十题
蓝桥杯Python编程练习题的集合,涵盖了从基础到提高的多个算法题目及其解答。
135 3
蓝桥杯练习题(三):Python组之算法训练提高综合五十题
|
3月前
|
算法 数据可视化 Python
使用 Python 模拟蒙特卡洛实验
使用 Python 模拟蒙特卡洛实验
52 1
|
4月前
|
存储 大数据 索引
解锁Python隐藏技能:构建高效后缀树Suffix Tree,处理大数据游刃有余!
通过构建高效的后缀树,Python程序在处理大规模字符串数据时能够游刃有余,显著提升性能和效率。无论是学术研究还是工业应用,Suffix Tree都是不可或缺的强大工具。
73 6
|
4月前
|
大数据 UED 开发者
实战演练:利用Python的Trie树优化搜索算法,性能飙升不是梦!
在数据密集型应用中,高效搜索算法至关重要。Trie树(前缀树/字典树)通过优化字符串处理和搜索效率成为理想选择。本文通过Python实战演示Trie树构建与应用,显著提升搜索性能。Trie树利用公共前缀减少查询时间,支持快速插入、删除和搜索。以下为简单示例代码,展示如何构建及使用Trie树进行搜索与前缀匹配,适用于自动补全、拼写检查等场景,助力提升应用性能与用户体验。
73 2