【分布式技术专题】「架构实践于案例分析」盘点高并发场景的技术设计方案和规划

本文涉及的产品
云数据库 Tair(兼容Redis),内存型 2GB
Redis 开源版,标准版 2GB
推荐场景:
搭建游戏排行榜
简介: 【分布式技术专题】「架构实践于案例分析」盘点高并发场景的技术设计方案和规划

高并发是什么?


⾼并发(High Concurrency)是互联⽹分布式系统架构设计中必须考虑的因素之⼀,它通常是指通过设计保证系统能够同时并⾏处理很多请求。



高并发属性和因素


⾼并发相关常⽤的⼀些指标有响应时间(Response Time),吞吐量(Throughput,eg. RPS),每 秒查询率 QPS(Query Per Second),并发⽤户数等。


  • 响应时间(RT)系统对请求做出响应的时间。例如系统处理⼀个 HTTP 请求需要 200ms,这个200ms是系统的响应时间。
  • 吞吐量单位时间内处理的请求数量。
  • QPS每秒响应请求数。在互联⽹领域,这个指标和吞吐量区分的没有这么明显。
  • 并发⽤户数同时承载正常使⽤系统功能的⽤户数量。例如即时通讯系统,同时在线量就****代表了系统的并发⽤户数。



高并发容错技术


高并发容错技术主要是指在高并发场景下的技术实现和解决如何在发生错误的场景下,仍然可以保证系统可以正常运行的技术手段和设计实现方案。


雪崩效应

image.png

如何容错


  • 超时
  • 限流
  • 舱壁模式

断路器


断路器转换示意图

image.png


断路器
组件名称 Hystrix Sentinel Resilience4J
超时机制 线程池模式有timeout 暂时支持的不好 通过限时器实现,此外也有线程池模式
限流 采用线程池和信号量限流 采用信号量机制限流 采用线程池和信号量限流
仓壁模式 采用线程池模式实现隔离 暂时支持的不好 采用线程池模式实现隔离
断路器 采用了开关进行模式 暂时支持的不好 采用了开关进行模式



异步化


本地调⽤异步化


  1. 创建⼀个线程,将耗时操作放到独⽴的线程中执⾏【不建议使⽤】
  2. 使⽤线程池创建线程
  3. @Async注解(尽量把@Async注解标注的⽅法,独⽴到⼀个类⾥⾯去,防⽌this调⽤导致⽆效)



线程池要⾃⼰指定⼀下⼤⼩,防⽌⾼并发场景下内存溢出



远程操作异步化


  • 采用-AsyncRestTemplate



不阻塞当前的业务线程执行,不会造成阻塞和雪崩。

ListenableFuture<ResponseEntity<String>> future = 
    asyncRestTemplate.getForEntity("http://www.baidu.com", String.class);
    future.addCallback(new ListenableFutureCallback<ResponseEntity<String>>() {
        //调⽤失败
        @Override
        public void onFailure(Throwable ex) {
          System.out.println("失败");
        }
        //调⽤成功
        @Override
        public void onSuccess(ResponseEntity<String> result) {
          System.out.println(result.getBody());
        }
  });
  ResponseEntity<String> entity = future.get();
  String body = entity.getBody();
  System.out.println(body);
复制代码


  • 采用-WebClient
  • maven依赖
<dependency>
  <groupId>org.springframework</groupId>
  <artifactId>spring-webflux</artifactId>
</dependency>
<dependency>
  <groupId>io.projectreactor.netty</groupId>
  <artifactId>reactor-netty</artifactId>
</dependency>
复制代码
  • 代码实现
Mono<String> mono = this.webClient.get().uri("http://www.baidu.com").retrieve()
                         .bodyToMono(String.class);
HashMap<Object, Object> map = new HashMap<>();
map.put("addressId","demoData");
map.put("userId","demoData");
map.put("receiver","demoData");
map.put("mobile","15151816012");
map.put("province","demoData");
map.put("city","demoData");
map.put("district","demoData");
map.put("detail","demoData");
Mono<String> mono = this.webClient.post().uri("http://localhost:8088/address/update")
    .contentType(MediaType.APPLICATION_JSON_UTF8)
    .body(BodyInserters.fromObject(map))
    .retrieve().bodyToMono(String.class);
return mono.block();
复制代码



其他异步实现机制介绍


  • 基于MQ实现异步化
  • ⽆阻塞编程
  • Reactive Stream编程模型
  • RxJava2/RxJava3编程模型
  • 无锁编程Disruptor编程模型



池化技术改善资源


  • 对象池:享元模式
  • 线程池:生产者/消费者模式
  • 连接池:资源复用模式



缓存提升应用性能




缓存优化问题-如何提升命中率


  • 缓存场景要⽤对——读多写少使⽤缓存才有意义



  • 合理的粒度


  • key:userId value:user对象
  • key:users value:[user1,user2,user3]
  • 前者,当且仅当该user发⽣变化缓存更新;后者任意⼀个user发⽣变化缓存都要更新,命中率往往相对较低



  • 缓存容量


  • ⼀旦缓存存储达到⼀定阈值,就会淘汰数据,缓存算法:LRU/LFU/FIFO等等。
  • 为你的缓存集群做好容量规划。
  • 故障问题



  • 例如:某个缓存实例挂了,此时也会影响命中率
  • 故障转移、⾼可⽤很重要



  • 迁移/扩容缩
  • 不管是⼀致性hash,还是hash槽算法,都有⼀定的数据需要搬迁。



缓存错误问题-缓存雪崩


缓存雪崩是当Redis等缓存服务器挂了,客户端直接请求到数据库⾥⾯。数据库负载⾮常⾼。甚⾄数据库拖挂了。

image.png

  • 优化⽅法:保持缓存层服务器的⾼可⽤。 监控、集群、哨兵。当集群⾥有服务器有问题,让哨兵****踢出去。


  • 依赖隔离组件为后端限流并降级。 ⽐如推荐服务中,如果个性化推荐服务不可⽤,可以降级为热****点数据。


提前演练。演练缓存层crash后,应⽤以及后端的负载情况以及可能出现的问题。 对此做⼀些预案设定。


  • ⽆底洞问题


2010年,Facebook有了3000个Memcached节点,他们发现加机器性能没能提升反⽽下降。

例如:要想对Redis执⾏mget操作,或者在Cluster上实现mget的效果,在集群上执⾏的性能⽐单机 差,⽽且随着节点的增加,性能会越来越差(如果⽤并⾏IO的⽅案,那么⽹络时间复杂度就会从O(1) 变成O(node)

image.png分析总结


  • 更多的机器 != 更⾼的性能
  • 批量接⼝需求(mget/mset)等,机器越多可能性能越差
  • 数据增⻓和⽔平扩展的需求,随着业务量增⼤,就是要⽔平扩容



优化IO的⼏种⽅法:


  • 命令本身的优化:例如慢查询keys、hgetall bigkey等等,性能本身就差,要慎⽤
  • 减少⽹络通信次数
  • 降低接⼊成本:例如客户端⻓连接/连接池、NIO等

  • 热点key的重建优化


问题描述:热点key + 较⻓的重建时间


新浪微博有个⼤V发了⼀条微博,很多⼈去访问,但是可能缓存的设置(或重建)过程是⽐较慢 的,那么就可能导致⼤量的线程都会查询数据源,对数据源压⼒很⼤,⽽且响应⾮常慢

image.png

  • 减少缓存重建的次数
  • 数据尽可能⼀致
  • 互斥锁(读写锁)
  • 永远不过期

  • 分布式锁方案

image.png

  • 可能会有⼤量的线程阻塞住
  • 可能存在死锁问题
  • 永远不过期
  • 缓存层⾯:不设置过期时间(不设置expire)
  • 功能层⾯:为每个value添加逻辑过期时间,⼀但发现超过逻辑过期时间后,就使⽤单独的线程构建缓存。

image.png

  • 可能存在的问题
  • 数据可能会不⼀致
  • 额外的编码⼯作
方案 优点 缺点
互斥锁 思路简单、保证一致性 容易死锁、性能较差
永不过期 基本可以杜绝热点key问题 无法保证一致性、需要独立功能维护缓存



缓存错误问题-缓存穿透


缓存穿透是指查询⼀个⼀定不存在的数据,由于缓存是不命中时需要从数据库查询,查不到数据则不写⼊缓存,这将导致这个不存在的数据每次请求都要到数据库去查询,造成缓存穿透。


如图,如果⽤户通过某个条件,查询缓存没有查到数据,然后查询数据库也没有查到结果,于是数据库直接返回。下⼀次,⽤户继续通过这个条件再去查询,缓存中依然不会有结果,⼜会查询到数据库。如果有⼤量的请求⽆法命中,就可能打穿数据库。

image.png

  • 业务代码⾃身问题


  • 例如调⽤别⼈的接⼝,别⼈的接⼝有问题,那我这边拿到的就是个异常或者null,此时我这边没办法对别⼈接⼝的存储层进⾏缓存恶意hinting、爬⾍等等,例如前端随机⽤⼀个uuid去查询⽂章内容。
  • 观察业务响应时间


  • 响应时间突然过慢,那么可能出现了穿透问题


  • 业务本身出现了问题


相关指标:总调⽤数、缓存层命中数、存储层命中数


  • 解决⽅案
  • 缓存空对象

image.png

  • 存在的问题:


  • 需要更多的key
  • ⼀般会设置过期时间
  • 缓存层和存储层数据“短期”不⼀致


例如调⽤的是⼀个接⼝,接⼝开始挂了,返回null,redis将null给缓存起来了。后来接⼝恢复了正常,存储层也是有数据的,但在缓存过期之前,客户端依然只会接收到null,⽽并⾮接⼝返回的数据。 可以在接⼝正常时,刷新⼀下缓存。(可以考虑在更新或者新增操作的时候删除缓存)。



  • 布隆过滤器


  • 对所有可能查询的参数以hash形式存储,在控制层先进⾏校验,不符合则丢弃。还有最常⻅的则是采⽤布隆过滤器,将所有可能存在的数据哈希到⼀个⾜够⼤的bitmap中,⼀个⼀定不存在的数据会被这个bitmap拦截掉,从⽽避免了对底层存储系统的查询压⼒。


  • 存在问题


  • 对于频繁更新的数据,很难实时构建布隆过滤器。⼀般都是对不太容易变化的数据集使⽤布隆过滤器。



⽔平扩容与垂直扩容


  • 垂直扩容


  • ⽔平扩容




相关实践学习
基于Redis实现在线游戏积分排行榜
本场景将介绍如何基于Redis数据库实现在线游戏中的游戏玩家积分排行榜功能。
云数据库 Redis 版使用教程
云数据库Redis版是兼容Redis协议标准的、提供持久化的内存数据库服务,基于高可靠双机热备架构及可无缝扩展的集群架构,满足高读写性能场景及容量需弹性变配的业务需求。 产品详情:https://www.aliyun.com/product/kvstore &nbsp; &nbsp; ------------------------------------------------------------------------- 阿里云数据库体验:数据库上云实战 开发者云会免费提供一台带自建MySQL的源数据库&nbsp;ECS 实例和一台目标数据库&nbsp;RDS实例。跟着指引,您可以一步步实现将ECS自建数据库迁移到目标数据库RDS。 点击下方链接,领取免费ECS&amp;RDS资源,30分钟完成数据库上云实战!https://developer.aliyun.com/adc/scenario/51eefbd1894e42f6bb9acacadd3f9121?spm=a2c6h.13788135.J_3257954370.9.4ba85f24utseFl
相关文章
|
19天前
|
Kubernetes Cloud Native 微服务
探索云原生技术:容器化与微服务架构的融合之旅
本文将带领读者深入了解云原生技术的核心概念,特别是容器化和微服务架构如何相辅相成,共同构建现代软件系统。我们将通过实际代码示例,探讨如何在云平台上部署和管理微服务,以及如何使用容器编排工具来自动化这一过程。文章旨在为开发者和技术决策者提供实用的指导,帮助他们在云原生时代中更好地设计、部署和维护应用。
|
12天前
|
监控 安全 API
使用PaliGemma2构建多模态目标检测系统:从架构设计到性能优化的技术实践指南
本文详细介绍了PaliGemma2模型的微调流程及其在目标检测任务中的应用。PaliGemma2通过整合SigLIP-So400m视觉编码器与Gemma 2系列语言模型,实现了多模态数据的高效处理。文章涵盖了开发环境构建、数据集预处理、模型初始化与配置、数据加载系统实现、模型微调、推理与评估系统以及性能分析与优化策略等内容。特别强调了计算资源优化、训练过程监控和自动化优化流程的重要性,为机器学习工程师和研究人员提供了系统化的技术方案。
133 77
使用PaliGemma2构建多模态目标检测系统:从架构设计到性能优化的技术实践指南
|
16天前
|
消息中间件 SQL 中间件
大厂都在用的分布式事务方案,Seata+RocketMQ带你打破10万QPS瓶颈
分布式事务涉及跨多个数据库或服务的操作,确保数据一致性。本地事务通过数据库直接支持ACID特性,而分布式事务则需解决跨服务协调难、高并发压力及性能与一致性权衡等问题。常见的解决方案包括两阶段提交(2PC)、Seata提供的AT和TCC模式、以及基于消息队列的最终一致性方案。这些方法各有优劣,适用于不同业务场景,选择合适的方案需综合考虑业务需求、系统规模和技术团队能力。
115 7
|
18天前
|
运维 Cloud Native 持续交付
云原生技术深度探索:重塑现代IT架构的无形之力####
本文深入剖析了云原生技术的核心概念、关键技术组件及其对现代IT架构变革的深远影响。通过实例解析,揭示云原生如何促进企业实现敏捷开发、弹性伸缩与成本优化,为数字化转型提供强有力的技术支撑。不同于传统综述,本摘要直接聚焦于云原生技术的价值本质,旨在为读者构建一个宏观且具体的技术蓝图。 ####
|
7月前
|
消息中间件 Java Linux
2024年最全BATJ真题突击:Java基础+JVM+分布式高并发+网络编程+Linux(1),2024年最新意外的惊喜
2024年最全BATJ真题突击:Java基础+JVM+分布式高并发+网络编程+Linux(1),2024年最新意外的惊喜
|
6月前
|
缓存 NoSQL Java
Java高并发实战:利用线程池和Redis实现高效数据入库
Java高并发实战:利用线程池和Redis实现高效数据入库
533 0
|
4月前
|
监控 算法 Java
企业应用面临高并发等挑战,优化Java后台系统性能至关重要
随着互联网技术的发展,企业应用面临高并发等挑战,优化Java后台系统性能至关重要。本文提供三大技巧:1)优化JVM,如选用合适版本(如OpenJDK 11)、调整参数(如使用G1垃圾收集器)及监控性能;2)优化代码与算法,减少对象创建、合理使用集合及采用高效算法(如快速排序);3)数据库优化,包括索引、查询及分页策略改进,全面提升系统效能。
55 0
|
6月前
|
存储 NoSQL Java
探索Java分布式锁:在高并发环境下的同步访问实现与优化
【6月更文挑战第30天】Java分布式锁在高并发下确保数据一致性,通过Redis的SETNX、ZooKeeper的临时节点、数据库操作等方式实现。优化策略包括锁超时重试、续期、公平性及性能提升,关键在于平衡同步与效率,适应大规模分布式系统的需求。
200 1
|
5月前
|
算法 Java 调度
高并发架构设计三大利器:缓存、限流和降级问题之使用Java代码实现令牌桶算法问题如何解决
高并发架构设计三大利器:缓存、限流和降级问题之使用Java代码实现令牌桶算法问题如何解决
|
5月前
|
监控 网络协议 Java
Java面试题:解释Java NIO与BIO的区别,以及NIO的优势和应用场景。如何在高并发应用中实现NIO?
Java面试题:解释Java NIO与BIO的区别,以及NIO的优势和应用场景。如何在高并发应用中实现NIO?
85 0