【分布式技术专题】「架构实践于案例分析」盘点高并发场景的技术设计方案和规划

本文涉及的产品
Redis 开源版,标准版 2GB
推荐场景:
搭建游戏排行榜
简介: 【分布式技术专题】「架构实践于案例分析」盘点高并发场景的技术设计方案和规划

高并发是什么?


⾼并发(High Concurrency)是互联⽹分布式系统架构设计中必须考虑的因素之⼀,它通常是指通过设计保证系统能够同时并⾏处理很多请求。



高并发属性和因素


⾼并发相关常⽤的⼀些指标有响应时间(Response Time),吞吐量(Throughput,eg. RPS),每 秒查询率 QPS(Query Per Second),并发⽤户数等。


  • 响应时间(RT)系统对请求做出响应的时间。例如系统处理⼀个 HTTP 请求需要 200ms,这个200ms是系统的响应时间。
  • 吞吐量单位时间内处理的请求数量。
  • QPS每秒响应请求数。在互联⽹领域,这个指标和吞吐量区分的没有这么明显。
  • 并发⽤户数同时承载正常使⽤系统功能的⽤户数量。例如即时通讯系统,同时在线量就****代表了系统的并发⽤户数。



高并发容错技术


高并发容错技术主要是指在高并发场景下的技术实现和解决如何在发生错误的场景下,仍然可以保证系统可以正常运行的技术手段和设计实现方案。


雪崩效应

image.png

如何容错


  • 超时
  • 限流
  • 舱壁模式

断路器


断路器转换示意图

image.png


断路器
组件名称 Hystrix Sentinel Resilience4J
超时机制 线程池模式有timeout 暂时支持的不好 通过限时器实现,此外也有线程池模式
限流 采用线程池和信号量限流 采用信号量机制限流 采用线程池和信号量限流
仓壁模式 采用线程池模式实现隔离 暂时支持的不好 采用线程池模式实现隔离
断路器 采用了开关进行模式 暂时支持的不好 采用了开关进行模式



异步化


本地调⽤异步化


  1. 创建⼀个线程,将耗时操作放到独⽴的线程中执⾏【不建议使⽤】
  2. 使⽤线程池创建线程
  3. @Async注解(尽量把@Async注解标注的⽅法,独⽴到⼀个类⾥⾯去,防⽌this调⽤导致⽆效)



线程池要⾃⼰指定⼀下⼤⼩,防⽌⾼并发场景下内存溢出



远程操作异步化


  • 采用-AsyncRestTemplate



不阻塞当前的业务线程执行,不会造成阻塞和雪崩。

ListenableFuture<ResponseEntity<String>> future = 
    asyncRestTemplate.getForEntity("http://www.baidu.com", String.class);
    future.addCallback(new ListenableFutureCallback<ResponseEntity<String>>() {
        //调⽤失败
        @Override
        public void onFailure(Throwable ex) {
          System.out.println("失败");
        }
        //调⽤成功
        @Override
        public void onSuccess(ResponseEntity<String> result) {
          System.out.println(result.getBody());
        }
  });
  ResponseEntity<String> entity = future.get();
  String body = entity.getBody();
  System.out.println(body);
复制代码


  • 采用-WebClient
  • maven依赖
<dependency>
  <groupId>org.springframework</groupId>
  <artifactId>spring-webflux</artifactId>
</dependency>
<dependency>
  <groupId>io.projectreactor.netty</groupId>
  <artifactId>reactor-netty</artifactId>
</dependency>
复制代码
  • 代码实现
Mono<String> mono = this.webClient.get().uri("http://www.baidu.com").retrieve()
                         .bodyToMono(String.class);
HashMap<Object, Object> map = new HashMap<>();
map.put("addressId","demoData");
map.put("userId","demoData");
map.put("receiver","demoData");
map.put("mobile","15151816012");
map.put("province","demoData");
map.put("city","demoData");
map.put("district","demoData");
map.put("detail","demoData");
Mono<String> mono = this.webClient.post().uri("http://localhost:8088/address/update")
    .contentType(MediaType.APPLICATION_JSON_UTF8)
    .body(BodyInserters.fromObject(map))
    .retrieve().bodyToMono(String.class);
return mono.block();
复制代码



其他异步实现机制介绍


  • 基于MQ实现异步化
  • ⽆阻塞编程
  • Reactive Stream编程模型
  • RxJava2/RxJava3编程模型
  • 无锁编程Disruptor编程模型



池化技术改善资源


  • 对象池:享元模式
  • 线程池:生产者/消费者模式
  • 连接池:资源复用模式



缓存提升应用性能




缓存优化问题-如何提升命中率


  • 缓存场景要⽤对——读多写少使⽤缓存才有意义



  • 合理的粒度


  • key:userId value:user对象
  • key:users value:[user1,user2,user3]
  • 前者,当且仅当该user发⽣变化缓存更新;后者任意⼀个user发⽣变化缓存都要更新,命中率往往相对较低



  • 缓存容量


  • ⼀旦缓存存储达到⼀定阈值,就会淘汰数据,缓存算法:LRU/LFU/FIFO等等。
  • 为你的缓存集群做好容量规划。
  • 故障问题



  • 例如:某个缓存实例挂了,此时也会影响命中率
  • 故障转移、⾼可⽤很重要



  • 迁移/扩容缩
  • 不管是⼀致性hash,还是hash槽算法,都有⼀定的数据需要搬迁。



缓存错误问题-缓存雪崩


缓存雪崩是当Redis等缓存服务器挂了,客户端直接请求到数据库⾥⾯。数据库负载⾮常⾼。甚⾄数据库拖挂了。

image.png

  • 优化⽅法:保持缓存层服务器的⾼可⽤。 监控、集群、哨兵。当集群⾥有服务器有问题,让哨兵****踢出去。


  • 依赖隔离组件为后端限流并降级。 ⽐如推荐服务中,如果个性化推荐服务不可⽤,可以降级为热****点数据。


提前演练。演练缓存层crash后,应⽤以及后端的负载情况以及可能出现的问题。 对此做⼀些预案设定。


  • ⽆底洞问题


2010年,Facebook有了3000个Memcached节点,他们发现加机器性能没能提升反⽽下降。

例如:要想对Redis执⾏mget操作,或者在Cluster上实现mget的效果,在集群上执⾏的性能⽐单机 差,⽽且随着节点的增加,性能会越来越差(如果⽤并⾏IO的⽅案,那么⽹络时间复杂度就会从O(1) 变成O(node)

image.png分析总结


  • 更多的机器 != 更⾼的性能
  • 批量接⼝需求(mget/mset)等,机器越多可能性能越差
  • 数据增⻓和⽔平扩展的需求,随着业务量增⼤,就是要⽔平扩容



优化IO的⼏种⽅法:


  • 命令本身的优化:例如慢查询keys、hgetall bigkey等等,性能本身就差,要慎⽤
  • 减少⽹络通信次数
  • 降低接⼊成本:例如客户端⻓连接/连接池、NIO等

  • 热点key的重建优化


问题描述:热点key + 较⻓的重建时间


新浪微博有个⼤V发了⼀条微博,很多⼈去访问,但是可能缓存的设置(或重建)过程是⽐较慢 的,那么就可能导致⼤量的线程都会查询数据源,对数据源压⼒很⼤,⽽且响应⾮常慢

image.png

  • 减少缓存重建的次数
  • 数据尽可能⼀致
  • 互斥锁(读写锁)
  • 永远不过期

  • 分布式锁方案

image.png

  • 可能会有⼤量的线程阻塞住
  • 可能存在死锁问题
  • 永远不过期
  • 缓存层⾯:不设置过期时间(不设置expire)
  • 功能层⾯:为每个value添加逻辑过期时间,⼀但发现超过逻辑过期时间后,就使⽤单独的线程构建缓存。

image.png

  • 可能存在的问题
  • 数据可能会不⼀致
  • 额外的编码⼯作
方案 优点 缺点
互斥锁 思路简单、保证一致性 容易死锁、性能较差
永不过期 基本可以杜绝热点key问题 无法保证一致性、需要独立功能维护缓存



缓存错误问题-缓存穿透


缓存穿透是指查询⼀个⼀定不存在的数据,由于缓存是不命中时需要从数据库查询,查不到数据则不写⼊缓存,这将导致这个不存在的数据每次请求都要到数据库去查询,造成缓存穿透。


如图,如果⽤户通过某个条件,查询缓存没有查到数据,然后查询数据库也没有查到结果,于是数据库直接返回。下⼀次,⽤户继续通过这个条件再去查询,缓存中依然不会有结果,⼜会查询到数据库。如果有⼤量的请求⽆法命中,就可能打穿数据库。

image.png

  • 业务代码⾃身问题


  • 例如调⽤别⼈的接⼝,别⼈的接⼝有问题,那我这边拿到的就是个异常或者null,此时我这边没办法对别⼈接⼝的存储层进⾏缓存恶意hinting、爬⾍等等,例如前端随机⽤⼀个uuid去查询⽂章内容。
  • 观察业务响应时间


  • 响应时间突然过慢,那么可能出现了穿透问题


  • 业务本身出现了问题


相关指标:总调⽤数、缓存层命中数、存储层命中数


  • 解决⽅案
  • 缓存空对象

image.png

  • 存在的问题:


  • 需要更多的key
  • ⼀般会设置过期时间
  • 缓存层和存储层数据“短期”不⼀致


例如调⽤的是⼀个接⼝,接⼝开始挂了,返回null,redis将null给缓存起来了。后来接⼝恢复了正常,存储层也是有数据的,但在缓存过期之前,客户端依然只会接收到null,⽽并⾮接⼝返回的数据。 可以在接⼝正常时,刷新⼀下缓存。(可以考虑在更新或者新增操作的时候删除缓存)。



  • 布隆过滤器


  • 对所有可能查询的参数以hash形式存储,在控制层先进⾏校验,不符合则丢弃。还有最常⻅的则是采⽤布隆过滤器,将所有可能存在的数据哈希到⼀个⾜够⼤的bitmap中,⼀个⼀定不存在的数据会被这个bitmap拦截掉,从⽽避免了对底层存储系统的查询压⼒。


  • 存在问题


  • 对于频繁更新的数据,很难实时构建布隆过滤器。⼀般都是对不太容易变化的数据集使⽤布隆过滤器。



⽔平扩容与垂直扩容


  • 垂直扩容


  • ⽔平扩容




相关文章
|
29天前
|
人工智能 安全 Java
分布式 Multi Agent 安全高可用探索与实践
在人工智能加速发展的今天,AI Agent 正在成为推动“人工智能+”战略落地的核心引擎。无论是技术趋势还是政策导向,都预示着一场深刻的变革正在发生。如果你也在探索 Agent 的应用场景,欢迎关注 AgentScope 项目,或尝试使用阿里云 MSE + Higress + Nacos 构建属于你的 AI 原生应用。一起,走进智能体的新世界。
348 36
|
23天前
|
关系型数据库 Apache 微服务
《聊聊分布式》分布式系统基石:深入理解CAP理论及其工程实践
CAP理论指出分布式系统中一致性、可用性、分区容错性三者不可兼得,必须根据业务需求进行权衡。实际应用中,不同场景选择不同策略:金融系统重一致(CP),社交应用重可用(AP),内网系统可选CA。现代架构更趋向动态调整与混合策略,灵活应对复杂需求。
|
3月前
|
人工智能 算法 前端开发
超越Prompt Engineering:揭秘高并发AI系统的上下文工程实践
本文系统解析AI工程范式从Prompt Engineering到Context Engineering的演进路径,深入探讨RAG、向量数据库、上下文压缩等关键技术,并结合LangGraph与智能体系统架构,助力开发者构建高可靠AI应用。
422 2
|
2月前
|
网络协议 NoSQL API
转转客服IM系统的WebSocket集群架构设计和部署方案
客服IM系统是转转自研的在线客服系统,是用户和转转客服沟通的重要工具,主要包括机器人客服、人工客服、会话分配、技能组管理等功能。在这套系统中,我们使用了很多开源框架和中间件,今天讲一下客服IM系统中WebSocket集群的的实践和应用。
178 0
|
23天前
|
缓存 Cloud Native 中间件
《聊聊分布式》从单体到分布式:电商系统架构演进之路
本文系统阐述了电商平台从单体到分布式架构的演进历程,剖析了单体架构的局限性与分布式架构的优势,结合淘宝、京东等真实案例,深入探讨了服务拆分、数据库分片、中间件体系等关键技术实践,并总结了渐进式迁移策略与核心经验,为大型应用架构升级提供了全面参考。
|
1月前
|
存储 NoSQL 前端开发
【赵渝强老师】MongoDB的分布式存储架构
MongoDB分片通过将数据分布到多台服务器,实现海量数据的高效存储与读写。其架构包含路由、配置服务器和分片服务器,支持水平扩展,结合复制集保障高可用性,适用于大规模生产环境。
203 1
|
2月前
|
消息中间件 监控 Cloud Native
高效设计:支持亿级用户社交关系的100W QPS架构方案
面对亿级用户与百万QPS的高并发场景,性能测试成为系统稳定的关键。本文剖析真实业务痛点,详解从接口压测、全链路监控到瓶颈定位的完整性能体系,助你掌握大厂级性能优化能力,从容应对卡顿、宕机等线上挑战。
|
2月前
|
存储 监控 NoSQL
Redis高可用架构全解析:从主从复制到集群方案
Redis高可用确保服务持续稳定,避免单点故障导致数据丢失或业务中断。通过主从复制实现数据冗余,哨兵模式支持自动故障转移,Cluster集群则提供分布式数据分片与水平扩展,三者层层递进,保障读写分离、容灾切换与大规模数据存储,构建高性能、高可靠的Redis架构体系。
|
2月前
|
消息中间件 缓存 监控
中间件架构设计与实践:构建高性能分布式系统的核心基石
摘要 本文系统探讨了中间件技术及其在分布式系统中的核心价值。作者首先定义了中间件作为连接系统组件的&quot;神经网络&quot;,强调其在数据传输、系统稳定性和扩展性中的关键作用。随后详细分类了中间件体系,包括通信中间件(如RabbitMQ/Kafka)、数据中间件(如Redis/MyCAT)等类型。文章重点剖析了消息中间件的实现机制,通过Spring Boot代码示例展示了消息生产者的完整实现,涵盖消息ID生成、持久化、批量发送及重试机制等关键技术点。最后,作者指出中间件架构设计对系统性能的决定性影响,
|
边缘计算 Kubernetes 物联网
Kubernetes 赋能边缘计算:架构解析、挑战突破与实践方案
在物联网和工业互联网快速发展的背景下,边缘计算凭借就近处理数据的优势,成为解决云计算延迟高、带宽成本高的关键技术。而 Kubernetes 凭借统一管理、容器化适配和强大生态扩展性,正逐步成为边缘计算的核心编排平台。本文系统解析 Kubernetes 适配边缘环境的架构分层、核心挑战与新兴解决方案,为企业落地边缘项目提供实践参考。
209 0

热门文章

最新文章