推荐系统测评指标——计算DCG、IDCG以及nDCG的python代码

简介: 推荐系统测评指标——计算DCG、IDCG以及nDCG的python代码

1. 公式


DCG


image.png


其中, K是推荐列表的大小;

i 是指推荐列表中的第 i i i个推荐项; 是指推荐项 i i i 是否被用户点击,若点击则为 1 1 1,否则为 0 0 0,在实际测试中,我们通常吧推荐列表中在测试集的推荐项视为被用户点击的推荐项,不在测试集中的推荐项视为未被用户点击的推荐项;


IDCG:


image.png


注意到IDCG的计算公式与DCG一致,区别在于IDCG是完美的DCG,也即 r i = 1 r_i=1 r

i =1的推荐项在推荐列表 K K K头部, r i = 0 r_i=0 r i =0的推荐项在推荐列表 K K K的末尾。


nDCG:


image.png


NDCG是归一化后的DCG


2. 代码


import numpy as np
def DCG(A, test_set):
    # ------ 计算 DCG ------ #
    dcg = 0
    for i in range(len(A)):
        # 给r_i赋值,若r_i在测试集中则为1,否则为0
        r_i = 0
        if A[i] in test_set:
            r_i = 1
        dcg += (2 ** r_i - 1) / np.log2((i + 1) + 1) # (i+1)是因为下标从0开始
    return dcg
def IDCG(A, test_set):
    # ------ 将在测试中的a排到前面去,然后再计算DCG ------ #
    A_temp_1 = [] # 临时A,用于存储r_i为1的a
    A_temp_0 = []  # 临时A,用于存储r_i为0的a
    for a in A:
        if a in test_set:
            # 若a在测试集中则追加到A_temp_1中
            A_temp_1.append(a)
        else:
            # 若a不在测试集中则追加到A_temp_0中
            A_temp_0.append(a)
    A_temp_1.extend(A_temp_0)
    idcg = DCG(A_temp_1, test_set)
    return idcg
def NDCG(A, test_set):
    dcg = DCG(A, test_set) # 计算DCG
    idcg = IDCG(A, test_set) # 计算IDCG
    if dcg == 0 or idcg == 0:
        ndcg = 0
    else:
        ndcg = dcg / idcg
    return ndcg
if __name__ == "__main__":
  # ------ 计算推荐列表A的NDCG ------ #
  # A:推荐列表,一维list,存储了推荐算法推荐出的推荐项的id
  # test_set:测试集,一维list,存储了测试集推荐项的id
    ndcg_A = NDCG(A, test_set)
相关文章
|
9天前
|
数据采集 供应链 API
实战指南:通过1688开放平台API获取商品详情数据(附Python代码及避坑指南)
1688作为国内最大的B2B供应链平台,其API为企业提供合法合规的JSON数据源,直接获取批发价、SKU库存等核心数据。相比爬虫方案,官方API避免了反爬严格、数据缺失和法律风险等问题。企业接入1688商品API需完成资质认证、创建应用、签名机制解析及调用接口四步。应用场景包括智能采购系统、供应商评估模型和跨境选品分析。提供高频问题解决方案及安全合规实践,确保数据安全与合法使用。立即访问1688开放平台,解锁B2B数据宝藏!
|
10天前
|
API 开发工具 Python
【Azure Developer】编写Python SDK代码实现从China Azure中VM Disk中创建磁盘快照Snapshot
本文介绍如何使用Python SDK为中国区微软云(China Azure)中的虚拟机磁盘创建快照。通过Azure Python SDK的Snapshot Class,指定`location`和`creation_data`参数,使用`Copy`选项从现有磁盘创建快照。代码示例展示了如何配置Default Azure Credential,并设置特定于中国区Azure的`base_url`和`credential_scopes`。参考资料包括官方文档和相关API说明。
|
2月前
|
存储 缓存 Java
Python高性能编程:五种核心优化技术的原理与Python代码
Python在高性能应用场景中常因执行速度不及C、C++等编译型语言而受质疑,但通过合理利用标准库的优化特性,如`__slots__`机制、列表推导式、`@lru_cache`装饰器和生成器等,可以显著提升代码效率。本文详细介绍了这些实用的性能优化技术,帮助开发者在不牺牲代码质量的前提下提高程序性能。实验数据表明,这些优化方法能在内存使用和计算效率方面带来显著改进,适用于大规模数据处理、递归计算等场景。
78 5
Python高性能编程:五种核心优化技术的原理与Python代码
|
2月前
|
分布式计算 DataWorks 大数据
分布式Python计算服务MaxFrame测评
一文带你入门分布式Python计算服务MaxFrame
96 23
分布式Python计算服务MaxFrame测评
|
2月前
|
分布式计算 DataWorks 数据处理
产品测评 | 上手分布式Python计算服务MaxFrame产品最佳实践
MaxFrame是阿里云自研的分布式计算框架,专为大数据处理设计,提供高效便捷的Python开发体验。其主要功能包括Python编程接口、直接利用MaxCompute资源、与MaxCompute Notebook集成及镜像管理功能。本文基于MaxFrame最佳实践,详细介绍了在DataWorks中使用MaxFrame创建数据源、PyODPS节点和MaxFrame会话的过程,并展示了如何通过MaxFrame实现分布式Pandas处理和大语言模型数据处理。测评反馈指出,虽然MaxFrame具备强大的数据处理能力,但在文档细节和新手友好性方面仍有改进空间。
|
3月前
|
Python
课程设计项目之基于Python实现围棋游戏代码
游戏进去默认为九路玩法,当然也可以选择十三路或是十九路玩法 使用pycharam打开项目,pip安装模块并引用,然后运行即可, 代码每行都有详细的注释,可以做课程设计或者毕业设计项目参考
86 33
|
3月前
|
JavaScript API C#
【Azure Developer】Python代码调用Graph API将外部用户添加到组,结果无效,也无错误信息
根据Graph API文档,在单个请求中将多个成员添加到组时,Python代码示例中的`members@odata.bind`被错误写为`members@odata_bind`,导致用户未成功添加。
59 10
|
3月前
|
数据可视化 Python
以下是一些常用的图表类型及其Python代码示例,使用Matplotlib和Seaborn库。
通过这些思维导图和分析说明表,您可以更直观地理解和选择适合的数据可视化图表类型,帮助更有效地展示和分析数据。
120 8
|
10月前
|
算法 Python Java
Python每日一练(20230426) 删除重复字符、颜色分类、计算圆周率
Python每日一练(20230426) 删除重复字符、颜色分类、计算圆周率
93 0
Python每日一练(20230426) 删除重复字符、颜色分类、计算圆周率
|
Python
Python计算圆周率
Python计算圆周率
142 0

热门文章

最新文章