最近对对抗生成网络GAN比较感兴趣,相关知识点文章还在编辑中,以下这个是一个练手的小项目~
(在原模型上做了,为了减少计算量让其好训练一些。)
一、导入工具包
import tensorflow as tf from tensorflow.keras import layers import numpy as np import os import time import glob import matplotlib.pyplot as plt from IPython.display import clear_output from IPython import display
1.1 设置GPU
gpus = tf.config.list_physical_devices("GPU") if gpus: gpu0 = gpus[0] #如果有多个GPU,仅使用第0个GPU tf.config.experimental.set_memory_growth(gpu0, True) #设置GPU显存用量按需使用 tf.config.set_visible_devices([gpu0],"GPU") gpus
[PhysicalDevice(name='/physical_device:GPU:0', device_type='GPU')]
二、导入训练数据
链接: 点这里
fileList = glob.glob('./ani_face/*.jpg') len(fileList)
41621
2.1 数据可视化
# 随机显示几张图 for index,i in enumerate(fileList[:3]): display.display(display.Image(fileList[index]))
2.2 数据预处理
# 文件名列表 path_ds = tf.data.Dataset.from_tensor_slices(fileList) # 预处理,归一化,缩放 def load_and_preprocess_image(path): image = tf.io.read_file(path) image = tf.image.decode_jpeg(image, channels=3) image = tf.image.resize(image, [64, 64]) image /= 255.0 # normalize to [0,1] range image = tf.reshape(image, [1, 64,64,3]) return image image_ds = path_ds.map(load_and_preprocess_image) image_ds
<MapDataset shapes: (1, 64, 64, 3), types: tf.float32>
# 查看一张图片 for x in image_ds: plt.axis("off") plt.imshow((x.numpy() * 255).astype("int32")[0]) break
三、网络构建
3.1 D网络
discriminator = keras.Sequential( [ keras.Input(shape=(64, 64, 3)), layers.Conv2D(64, kernel_size=4, strides=2, padding="same"), layers.LeakyReLU(alpha=0.2), layers.Conv2D(128, kernel_size=4, strides=2, padding="same"), layers.LeakyReLU(alpha=0.2), layers.Conv2D(128, kernel_size=4, strides=2, padding="same"), layers.LeakyReLU(alpha=0.2), layers.Flatten(), layers.Dropout(0.2), layers.Dense(1, activation="sigmoid"), ], name="discriminator", ) discriminator.summary()
Model: "discriminator"
_________________________________________________________________
Layer (type) Output Shape Param #
=================================================================
conv2d (Conv2D) (None, 32, 32, 64) 3136
_________________________________________________________________
leaky_re_lu (LeakyReLU) (None, 32, 32, 64) 0
_________________________________________________________________
conv2d_1 (Conv2D) (None, 16, 16, 128) 131200
_________________________________________________________________
leaky_re_lu_1 (LeakyReLU) (None, 16, 16, 128) 0
_________________________________________________________________
conv2d_2 (Conv2D) (None, 8, 8, 128) 262272
_________________________________________________________________
leaky_re_lu_2 (LeakyReLU) (None, 8, 8, 128) 0
_________________________________________________________________
flatten (Flatten) (None, 8192) 0
_________________________________________________________________
dropout (Dropout) (None, 8192) 0
_________________________________________________________________
dense (Dense) (None, 1) 8193
=================================================================
Total params: 404,801
Trainable params: 404,801
Non-trainable params: 0
3.2 G网络
latent_dim = 128 generator = keras.Sequential( [ keras.Input(shape=(latent_dim,)), layers.Dense(8 * 8 * 128), layers.Reshape((8, 8, 128)), layers.Conv2DTranspose(128, kernel_size=4, strides=2, padding="same"), layers.LeakyReLU(alpha=0.2), layers.Conv2DTranspose(256, kernel_size=4, strides=2, padding="same"), layers.LeakyReLU(alpha=0.2), layers.Conv2DTranspose(512, kernel_size=4, strides=2, padding="same"), layers.LeakyReLU(alpha=0.2), layers.Conv2D(3, kernel_size=5, padding="same", activation="sigmoid"), ], name="generator", ) generator.summary()
3.3 重写 train_step
class GAN(keras.Model): def __init__(self, discriminator, generator, latent_dim): super(GAN, self).__init__() self.discriminator = discriminator self.generator = generator self.latent_dim = latent_dim def compile(self, d_optimizer, g_optimizer, loss_fn): super(GAN, self).compile() self.d_optimizer = d_optimizer self.g_optimizer = g_optimizer self.loss_fn = loss_fn self.d_loss_metric = keras.metrics.Mean(name="d_loss") self.g_loss_metric = keras.metrics.Mean(name="g_loss") @property def metrics(self): return [self.d_loss_metric, self.g_loss_metric] def train_step(self, real_images): # 生成噪音 batch_size = tf.shape(real_images)[0] random_latent_vectors = tf.random.normal(shape=(batch_size, self.latent_dim)) # 生成的图片 generated_images = self.generator(random_latent_vectors) # Combine them with real images combined_images = tf.concat([generated_images, real_images], axis=0) # Assemble labels discriminating real from fake images labels = tf.concat( [tf.ones((batch_size, 1)), tf.zeros((batch_size, 1))], axis=0 ) # Add random noise to the labels - important trick! labels += 0.05 * tf.random.uniform(tf.shape(labels)) # 训练判别器,生成的当成0,真实的当成1 with tf.GradientTape() as tape: predictions = self.discriminator(combined_images) d_loss = self.loss_fn(labels, predictions) grads = tape.gradient(d_loss, self.discriminator.trainable_weights) self.d_optimizer.apply_gradients( zip(grads, self.discriminator.trainable_weights) ) # Sample random points in the latent space random_latent_vectors = tf.random.normal(shape=(batch_size, self.latent_dim)) # Assemble labels that say "all real images" misleading_labels = tf.zeros((batch_size, 1)) # Train the generator (note that we should *not* update the weights # of the discriminator)! with tf.GradientTape() as tape: predictions = self.discriminator(self.generator(random_latent_vectors)) g_loss = self.loss_fn(misleading_labels, predictions) grads = tape.gradient(g_loss, self.generator.trainable_weights) self.g_optimizer.apply_gradients(zip(grads, self.generator.trainable_weights)) # Update metrics self.d_loss_metric.update_state(d_loss) self.g_loss_metric.update_state(g_loss) return { "d_loss": self.d_loss_metric.result(), "g_loss": self.g_loss_metric.result(), }
3.4 设置回调函数
class GANMonitor(keras.callbacks.Callback): def __init__(self, num_img=3, latent_dim=128): self.num_img = num_img self.latent_dim = latent_dim def on_epoch_end(self, epoch, logs=None): random_latent_vectors = tf.random.normal(shape=(self.num_img, self.latent_dim)) generated_images = self.model.generator(random_latent_vectors) generated_images *= 255 generated_images.numpy() for i in range(self.num_img): img = keras.preprocessing.image.array_to_img(generated_images[i]) display.display(img) img.save("gen_ani/generated_img_%03d_%d.png" % (epoch, i))
四、训练模型
epochs = 100 # In practice, use ~100 epochs gan = GAN(discriminator=discriminator, generator=generator, latent_dim=latent_dim) gan.compile( d_optimizer=keras.optimizers.Adam(learning_rate=0.0001), g_optimizer=keras.optimizers.Adam(learning_rate=0.0001), loss_fn=keras.losses.BinaryCrossentropy(), ) gan.fit( image_ds, epochs=epochs, callbacks=[GANMonitor(num_img=10, latent_dim=latent_dim)] )
五、保存模型
#保存模型 gan.generator.save('./data/ani_G_model')
六、生成漫画脸
G_model = tf.keras.models.load_model('./data/ani_G_model/',compile=False) def randomGenerate(): noise_seed = tf.random.normal([16, 128]) predictions = G_model(noise_seed, training=False) fig = plt.figure(figsize=(8, 8)) for i in range(predictions.shape[0]): plt.subplot(4, 4, i+1) img = (predictions[i].numpy() * 255 ).astype('int') plt.imshow(img ) plt.axis('off') plt.show()
count = 0 while True: randomGenerate() clear_output(wait=True) time.sleep(0.1) if count > 100: break count+=1