【High 翻天】Higer-order Networks with Battiston Federico (5)

简介: 在给出建模之后,接下来讨论如何将传统意义下的扩散拓展到高阶系统。扩散是一个线性过程,但在许多不同的情况下都有强相关性。

在给出建模之后,接下来讨论如何将传统意义下的扩散拓展到高阶系统。扩散是一个线性过程,但在许多不同的情况下都有强相关性。扩散这个词实际可指代两个不同的过程:

  1. 标准的扩散过程,或者也称为流体模型;
  2. 连续时间的随机游走。

在网络上的标准扩散中,一种“物质”被分配到图节点上,并从含量较高的节点流向含量较低的节点。这一过程本质上实现了各节点均衡的再分配,有时候也被称为 consensus。从数学的角度可以线性微分方程来表示:$$\dot{x}_{i}(t) = \sum_{j} a_{i j} (x_{j}(t) - x_{i}(t)) = \sum_{j} (L_{0}^{D})_{i j} x_{i}(t).$$ 此处,${x}_{i}(t)$ 代表第 $i$ 个顶点在时刻 $t$ 的浓度,$a_{i j}$ 是网络对应的邻接矩阵,$(L_{0}^{D})_{i j}$ 则是扩散拉普拉斯矩阵。事实上,这种平衡的稳定性是由拉普拉斯矩阵的谱性质决定的。上式的解可以通过投影到拉普拉斯特征向量来表示:$$x_{i}(t) = \sum_{\alpha = 1}^{N} c_{\alpha}(0) e^{- \lambda_{\alpha} t} \phi_{i}^{(\alpha)}.$$ 并可知解的收敛性与拉普拉斯矩阵的最小非零特征相关。与扩散相同,随机游走过程的特征是一个平稳分布,其中每个方向上的概率流彼此相等,并达到平衡。或可建模为随机微分方程。

高阶扩散

不同类型的扩散,取决于定义扩散的单纯形的维数。其思想是用 $x_{\sigma}(t)$ 表示时间 $t$ 时 $k$ 阶一般单纯形 $\sigma$ 处的浓度,并考虑如下耦合动力学方程:$$\dot{x}_{\sigma}(t) = \sum_{\sigma^{\prime} \in X_{k}} (L_{k}^{D})_{\sigma \sigma^{\prime}} x_{\sigma^{\prime}}(t).$$ 其对应的解为1:$$x_{\sigma}(t) = \sum_{\alpha = 1}^{N_{k}} e^{- \lambda_{\alpha} t} \phi_{\sigma}^{(\alpha)} \sum_{\sigma^{\prime} \in X_{k}} \phi_{\sigma^{\prime}}^{(\alpha)} x_{\sigma^{\prime}}(0).$$

题外话

在读这一部分的时候,忽然意识到现在大火的 diffusion models

记录几篇入门文献:

  • Understanding diffusion models: A unified prespective
  • What are diffusion models?
  • Genenrative modeling by estimating gradients of the data distribution

高阶随机游走

这部分在文中进行了文献罗列。

Example of random walk on hypergraphs. (A) A hypergraph with m = 7 hyperedges of size k = 2 and one hyperedge of size k = 6, and (B) its corresponding projected network. (C) Probability of finding the walker on node h (circles) and c (squares) for a random walk on the hypergraph (red) and on the projected network (green), and for different size m of the hub. 在这里插入图片描述

  1. J.J. Torres, G. Bianconi, Simplicial complexes: Higher-order spectral dimension and dynamics, J. Phys.: Complex. 1 (2020) 015002.
相关文章
【High 翻天】Higer-order Networks with Battiston Federico (8)
在本节将讨论一些观点和文化动力学模型,它们基于物理和数学文献启发、用简单规则来描述社会动态。
131 0
【High 翻天】Higer-order Networks with Battiston Federico (8)
【High 翻天】Higer-order Networks with Battiston Federico (7)
模拟人类行为的动态过程一直是许多研究的焦点,其中社会关系和交互通常被认为是一种潜在结构,是高阶方法的天然试验场。
【High 翻天】Higer-order Networks with Battiston Federico (7)
|
机器学习/深度学习
【High 翻天】Higer-order Networks with Battiston Federico (4)
模型的目的是再现、解释和预测系统的结构,最好用涉及系统两个或多个元素的交互来描述。为了考虑其输出的可变性,这些模型通常被指定为随机规则的集合,即随机过程。
【High 翻天】Higer-order Networks with Battiston Federico (4)
|
关系型数据库
【High 翻天】Higer-order Networks with Battiston Federico (3)
模型的目的是再现、解释和预测系统的结构,最好用涉及系统两个或多个元素的交互来描述。为了考虑其输出的可变性,这些模型通常被指定为随机规则的集合,即随机过程。
133 0
【High 翻天】Higer-order Networks with Battiston Federico (3)
|
人工智能 数据挖掘 Shell
【High 翻天】Higer-order Networks with Battiston Federico (2)
接上回说到了高阶的表示方法,接下来开始高阶系统的测量方法。
161 0
【High 翻天】Higer-order Networks with Battiston Federico (2)
【High 翻天】Higer-order Networks with Battiston Federico (1)
各种高维相关的东西火遍全球,一起High起来吧!
211 0
【High 翻天】Higer-order Networks with Battiston Federico (1)
【High 翻天】Higer-order Networks with Battiston Federico (6)
同步是两个或两个以上耦合动力系统的出现顺序,常见于物理、生物和社会系统中。在网络同步中,图的每个节点都是一个动态系统,它的动态通过成对的相互作用受到相邻节点的影响。当相互作用使所有或宏观部分的扰动达到相干状态时,同步就发生了。
125 0
|
存储 容器
Data Structures and Algorithms (English) - 7-18 Hashing - Hard Version(30 分)
Data Structures and Algorithms (English) - 7-18 Hashing - Hard Version(30 分)
222 0
Data Structures and Algorithms (English) - 7-18 Hashing - Hard Version(30 分)
Data Structures and Algorithms (English) - 6-6 Level-order Traversal(25 分)
Data Structures and Algorithms (English) - 6-6 Level-order Traversal(25 分)
106 0
PAT (Advanced Level) Practice - 1145 Hashing - Average Search Time(25 分)
PAT (Advanced Level) Practice - 1145 Hashing - Average Search Time(25 分)
121 0

热门文章

最新文章