TreeSet & TreeMap源码解析

本文涉及的产品
全局流量管理 GTM,标准版 1个月
云解析 DNS,旗舰版 1个月
公共DNS(含HTTPDNS解析),每月1000万次HTTP解析
简介: 《集合基础》

总体介绍

之所以把TreeSetTreeMap放在一起讲解,是因为二者在Java里有着相同的实现,前者仅仅是对后者做了一层包装,也就是说*TreeSet里面有一个TreeMap*(适配器模式)。因此本文将重点分析TreeMap

Java TreeMap实现了SortedMap接口,也就是说会按照key的大小顺序对Map中的元素进行排序,key大小的评判可以通过其本身的自然顺序(natural ordering),也可以通过构造时传入的比较器(Comparator)。

TreeMap底层通过红黑树(Red-Black tree)实现,也就意味着containsKey(), get(), put(), remove()都有着log(n)的时间复杂度。其具体算法实现参照了《算法导论》。

出于性能原因,TreeMap是非同步的(not synchronized),如果需要在多线程环境使用,需要程序员手动同步;或者通过如下方式将TreeMap包装成(wrapped)同步的:

SortedMap m = Collections.synchronizedSortedMap(new TreeMap(...));

红黑树是一种近似平衡的二叉查找树,它能够确保任何一个节点的左右子树的高度差不会超过二者中较低那个的一陪。具体来说,红黑树是满足如下条件的二叉查找树(binary search tree):

  1. 每个节点要么是红色,要么是黑色。
  2. 根节点必须是黑色
  3. 红色节点不能连续(也即是,红色节点的孩子和父亲都不能是红色)。
  4. 对于每个节点,从该点至null(树尾端)的任何路径,都含有相同个数的黑色节点。

在树的结构发生改变时(插入或者删除操作),往往会破坏上述条件3或条件4,需要通过调整使得查找树重新满足红黑树的约束条件。

预备知识

前文说到当查找树的结构发生改变时,红黑树的约束条件可能被破坏,需要通过调整使得查找树重新满足红黑树的约束条件。调整可以分为两类:一类是颜色调整,即改变某个节点的颜色;另一类是结构调整,集改变检索树的结构关系。结构调整过程包含两个基本操作:左旋(Rotate Left),右旋(RotateRight)

左旋

左旋的过程是将x的右子树绕x逆时针旋转,使得x的右子树成为x的父亲,同时修改相关节点的引用。旋转之后,二叉查找树的属性仍然满足。

TreeMap中左旋代码如下:

//Rotate Left
private void rotateLeft(Entry<K,V> p) {
    if (p != null) {
        Entry<K,V> r = p.right;
        p.right = r.left;
        if (r.left != null)
            r.left.parent = p;
        r.parent = p.parent;
        if (p.parent == null)
            root = r;
        else if (p.parent.left == p)
            p.parent.left = r;
        else
            p.parent.right = r;
        r.left = p;
        p.parent = r;
    }
}

右旋

右旋的过程是将x的左子树绕x顺时针旋转,使得x的左子树成为x的父亲,同时修改相关节点的引用。旋转之后,二叉查找树的属性仍然满足。

TreeMap中右旋代码如下:

//Rotate Right
private void rotateRight(Entry<K,V> p) {
    if (p != null) {
        Entry<K,V> l = p.left;
        p.left = l.right;
        if (l.right != null) l.right.parent = p;
        l.parent = p.parent;
        if (p.parent == null)
            root = l;
        else if (p.parent.right == p)
            p.parent.right = l;
        else p.parent.left = l;
        l.right = p;
        p.parent = l;
    }
}

寻找节点后继

对于一棵二叉查找树,给定节点t,其后继(树中比大于t的最小的那个元素)可以通过如下方式找到:

  1. t的右子树不空,则t的后继是其右子树中最小的那个元素。
  2. t的右孩子为空,则t的后继是其第一个向左走的祖先。

后继节点在红黑树的删除操作中将会用到。

TreeMap中寻找节点后继的代码如下:

// 寻找节点后继函数successor()
static <K,V> TreeMap.Entry<K,V> successor(Entry<K,V> t) {
    if (t == null)
        return null;
    else if (t.right != null) {// 1. t的右子树不空,则t的后继是其右子树中最小的那个元素
        Entry<K,V> p = t.right;
        while (p.left != null)
            p = p.left;
        return p;
    } else {// 2. t的右孩子为空,则t的后继是其第一个向左走的祖先
        Entry<K,V> p = t.parent;
        Entry<K,V> ch = t;
        while (p != null && ch == p.right) {
            ch = p;
            p = p.parent;
        }
        return p;
    }
}

方法剖析

get()

get(Object key)方法根据指定的key值返回对应的value,该方法调用了getEntry(Object key)得到相应的entry,然后返回entry.value。因此getEntry()是算法的核心。算法思想是根据key的自然顺序(或者比较器顺序)对二叉查找树进行查找,直到找到满足k.compareTo(p.key) == 0entry

具体代码如下:

//getEntry()方法
final Entry<K,V> getEntry(Object key) {
    ......
    if (key == null)//不允许key值为null
        throw new NullPointerException();
    Comparable<? super K> k = (Comparable<? super K>) key;//使用元素的自然顺序
    Entry<K,V> p = root;
    while (p != null) {
        int cmp = k.compareTo(p.key);
        if (cmp < 0)//向左找
            p = p.left;
        else if (cmp > 0)//向右找
            p = p.right;
        else
            return p;
    }
    return null;
}

put()

put(K key, V value)方法是将指定的key, value对添加到map里。该方法首先会对map做一次查找,看是否包含该元组,如果已经包含则直接返回,查找过程类似于getEntry()方法;如果没有找到则会在红黑树中插入新的entry,如果插入之后破坏了红黑树的约束条件,还需要进行调整(旋转,改变某些节点的颜色)。

public V put(K key, V value) {
    ......
    int cmp;
    Entry<K,V> parent;
    if (key == null)
        throw new NullPointerException();
    Comparable<? super K> k = (Comparable<? super K>) key;//使用元素的自然顺序
    do {
        parent = t;
        cmp = k.compareTo(t.key);
        if (cmp < 0) t = t.left;//向左找
        else if (cmp > 0) t = t.right;//向右找
        else return t.setValue(value);
    } while (t != null);
    Entry<K,V> e = new Entry<>(key, value, parent);//创建并插入新的entry
    if (cmp < 0) parent.left = e;
    else parent.right = e;
    fixAfterInsertion(e);//调整
    size++;
    return null;
}

上述代码的插入部分并不难理解:首先在红黑树上找到合适的位置,然后创建新的entry并插入(当然,新插入的节点一定是树的叶子)。难点是调整函数fixAfterInsertion(),前面已经说过,调整往往需要1.改变某些节点的颜色,2.对某些节点进行旋转。

调整函数fixAfterInsertion()的具体代码如下,其中用到了上文中提到的rotateLeft()rotateRight()函数。通过代码我们能够看到,情况2其实是落在情况3内的。情况4~情况6跟前三种情况是对称的,因此图解中并没有画出后三种情况,读者可以参考代码自行理解。

//红黑树调整函数fixAfterInsertion()
private void fixAfterInsertion(Entry<K,V> x) {
    x.color = RED;
    while (x != null && x != root && x.parent.color == RED) {
        if (parentOf(x) == leftOf(parentOf(parentOf(x)))) {
            Entry<K,V> y = rightOf(parentOf(parentOf(x)));
            if (colorOf(y) == RED) {
                setColor(parentOf(x), BLACK);              // 情况1
                setColor(y, BLACK);                        // 情况1
                setColor(parentOf(parentOf(x)), RED);      // 情况1
                x = parentOf(parentOf(x));                 // 情况1
            } else {
                if (x == rightOf(parentOf(x))) {
                    x = parentOf(x);                       // 情况2
                    rotateLeft(x);                         // 情况2
                }
                setColor(parentOf(x), BLACK);              // 情况3
                setColor(parentOf(parentOf(x)), RED);      // 情况3
                rotateRight(parentOf(parentOf(x)));        // 情况3
            }
        } else {
            Entry<K,V> y = leftOf(parentOf(parentOf(x)));
            if (colorOf(y) == RED) {
                setColor(parentOf(x), BLACK);              // 情况4
                setColor(y, BLACK);                        // 情况4
                setColor(parentOf(parentOf(x)), RED);      // 情况4
                x = parentOf(parentOf(x));                 // 情况4
            } else {
                if (x == leftOf(parentOf(x))) {
                    x = parentOf(x);                       // 情况5
                    rotateRight(x);                        // 情况5
                }
                setColor(parentOf(x), BLACK);              // 情况6
                setColor(parentOf(parentOf(x)), RED);      // 情况6
                rotateLeft(parentOf(parentOf(x)));         // 情况6
            }
        }
    }
    root.color = BLACK;
}

remove()

remove(Object key)的作用是删除key值对应的entry,该方法首先通过上文中提到的getEntry(Object key)方法找到key值对应的entry,然后调用deleteEntry(Entry entry)删除对应的entry。由于删除操作会改变红黑树的结构,有可能破坏红黑树的约束条件,因此有可能要进行调整。

getEntry()函数前面已经讲解过,这里重点放deleteEntry()上,该函数删除指定的entry并在红黑树的约束被破坏时进行调用fixAfterDeletion(Entry x)进行调整。

由于红黑树是一棵增强版的二叉查找树,红黑树的删除操作跟普通二叉查找树的删除操作也就非常相似,唯一的区别是红黑树在节点删除之后可能需要进行调整。现在考虑一棵普通二叉查找树的删除过程,可以简单分为两种情况:

  1. 删除点p的左右子树都为空,或者只有一棵子树非空。
  2. 删除点p的左右子树都非空。

对于上述情况1,处理起来比较简单,直接将p删除(左右子树都为空时),或者用非空子树替代p(只有一棵子树非空时);对于情况2,可以用p的后继s(树中大于x的最小的那个元素)代替p,然后使用情况1删除s(此时s一定满足情况1.可以画画看)。

基于以上逻辑,红黑树的节点删除函数deleteEntry()代码如下:

// 红黑树entry删除函数deleteEntry()
private void deleteEntry(Entry<K,V> p) {
    modCount++;
    size--;
    if (p.left != null && p.right != null) {// 2. 删除点p的左右子树都非空。
        Entry<K,V> s = successor(p);// 后继
        p.key = s.key;
        p.value = s.value;
        p = s;
    }
    Entry<K,V> replacement = (p.left != null ? p.left : p.right);
    if (replacement != null) {// 1. 删除点p只有一棵子树非空。
        replacement.parent = p.parent;
        if (p.parent == null)
            root = replacement;
        else if (p == p.parent.left)
            p.parent.left  = replacement;
        else
            p.parent.right = replacement;
        p.left = p.right = p.parent = null;
        if (p.color == BLACK)
            fixAfterDeletion(replacement);// 调整
    } else if (p.parent == null) {
        root = null;
    } else { // 1. 删除点p的左右子树都为空
        if (p.color == BLACK)
            fixAfterDeletion(p);// 调整
        if (p.parent != null) {
            if (p == p.parent.left)
                p.parent.left = null;
            else if (p == p.parent.right)
                p.parent.right = null;
            p.parent = null;
        }
    }
}

上述代码中占据大量代码行的,是用来修改父子节点间引用关系的代码,其逻辑并不难理解。下面着重讲解删除后调整函数fixAfterDeletion()。首先请思考一下,删除了哪些点才会导致调整?只有删除点是BLACK的时候,才会触发调整函数,因为删除RED节点不会破坏红黑树的任何约束,而删除BLACK节点会破坏规则4。

跟上文中讲过的fixAfterInsertion()函数一样,这里也要分成若干种情况。记住,无论有多少情况,具体的调整操作只有两种:1.改变某些节点的颜色,2.对某些节点进行旋转。

上述图解的总体思想是:将情况1首先转换成情况2,或者转换成情况3和情况4。当然,该图解并不意味着调整过程一定是从情况1开始。通过后续代码我们还会发现几个有趣的规则:a).如果是由情况1之后紧接着进入的情况2,那么情况2之后一定会退出循环(因为x为红色);b).一旦进入情况3和情况4,一定会退出循环(因为x为root)。

删除后调整函数fixAfterDeletion()的具体代码如下,其中用到了上文中提到的rotateLeft()rotateRight()函数。通过代码我们能够看到,情况3其实是落在情况4内的。情况5~情况8跟前四种情况是对称的,因此图解中并没有画出后四种情况,读者可以参考代码自行理解。

private void fixAfterDeletion(Entry<K,V> x) {
    while (x != root && colorOf(x) == BLACK) {
        if (x == leftOf(parentOf(x))) {
            Entry<K,V> sib = rightOf(parentOf(x));
            if (colorOf(sib) == RED) {
                setColor(sib, BLACK);                   // 情况1
                setColor(parentOf(x), RED);             // 情况1
                rotateLeft(parentOf(x));                // 情况1
                sib = rightOf(parentOf(x));             // 情况1
            }
            if (colorOf(leftOf(sib))  == BLACK &&
                colorOf(rightOf(sib)) == BLACK) {
                setColor(sib, RED);                     // 情况2
                x = parentOf(x);                        // 情况2
            } else {
                if (colorOf(rightOf(sib)) == BLACK) {
                    setColor(leftOf(sib), BLACK);       // 情况3
                    setColor(sib, RED);                 // 情况3
                    rotateRight(sib);                   // 情况3
                    sib = rightOf(parentOf(x));         // 情况3
                }
                setColor(sib, colorOf(parentOf(x)));    // 情况4
                setColor(parentOf(x), BLACK);           // 情况4
                setColor(rightOf(sib), BLACK);          // 情况4
                rotateLeft(parentOf(x));                // 情况4
                x = root;                               // 情况4
            }
        } else { // 跟前四种情况对称
            Entry<K,V> sib = leftOf(parentOf(x));
            if (colorOf(sib) == RED) {
                setColor(sib, BLACK);                   // 情况5
                setColor(parentOf(x), RED);             // 情况5
                rotateRight(parentOf(x));               // 情况5
                sib = leftOf(parentOf(x));              // 情况5
            }
            if (colorOf(rightOf(sib)) == BLACK &&
                colorOf(leftOf(sib)) == BLACK) {
                setColor(sib, RED);                     // 情况6
                x = parentOf(x);                        // 情况6
            } else {
                if (colorOf(leftOf(sib)) == BLACK) {
                    setColor(rightOf(sib), BLACK);      // 情况7
                    setColor(sib, RED);                 // 情况7
                    rotateLeft(sib);                    // 情况7
                    sib = leftOf(parentOf(x));          // 情况7
                }
                setColor(sib, colorOf(parentOf(x)));    // 情况8
                setColor(parentOf(x), BLACK);           // 情况8
                setColor(leftOf(sib), BLACK);           // 情况8
                rotateRight(parentOf(x));               // 情况8
                x = root;                               // 情况8
            }
        }
    }
    setColor(x, BLACK);
}

TreeSet

前面已经说过TreeSet是对TreeMap的简单包装,对TreeSet的函数调用都会转换成合适的TreeMap方法,因此TreeSet的实现非常简单。这里不再赘述。

// TreeSet是对TreeMap的简单包装
public class TreeSet<E> extends AbstractSet<E>
    implements NavigableSet<E>, Cloneable, java.io.Serializable
{
    ......
    private transient NavigableMap<E,Object> m;
    // Dummy value to associate with an Object in the backing Map
    private static final Object PRESENT = new Object();
    public TreeSet() {
        this.m = new TreeMap<E,Object>();// TreeSet里面有一个TreeMap
    }
    ......
    public boolean add(E e) {
        return m.put(e, PRESENT)==null;
    }
    ......
}
相关文章
|
4天前
|
存储 设计模式 算法
【23种设计模式·全精解析 | 行为型模式篇】11种行为型模式的结构概述、案例实现、优缺点、扩展对比、使用场景、源码解析
行为型模式用于描述程序在运行时复杂的流程控制,即描述多个类或对象之间怎样相互协作共同完成单个对象都无法单独完成的任务,它涉及算法与对象间职责的分配。行为型模式分为类行为模式和对象行为模式,前者采用继承机制来在类间分派行为,后者采用组合或聚合在对象间分配行为。由于组合关系或聚合关系比继承关系耦合度低,满足“合成复用原则”,所以对象行为模式比类行为模式具有更大的灵活性。 行为型模式分为: • 模板方法模式 • 策略模式 • 命令模式 • 职责链模式 • 状态模式 • 观察者模式 • 中介者模式 • 迭代器模式 • 访问者模式 • 备忘录模式 • 解释器模式
【23种设计模式·全精解析 | 行为型模式篇】11种行为型模式的结构概述、案例实现、优缺点、扩展对比、使用场景、源码解析
|
4天前
|
设计模式 存储 安全
【23种设计模式·全精解析 | 创建型模式篇】5种创建型模式的结构概述、实现、优缺点、扩展、使用场景、源码解析
结构型模式描述如何将类或对象按某种布局组成更大的结构。它分为类结构型模式和对象结构型模式,前者采用继承机制来组织接口和类,后者釆用组合或聚合来组合对象。由于组合关系或聚合关系比继承关系耦合度低,满足“合成复用原则”,所以对象结构型模式比类结构型模式具有更大的灵活性。 结构型模式分为以下 7 种: • 代理模式 • 适配器模式 • 装饰者模式 • 桥接模式 • 外观模式 • 组合模式 • 享元模式
【23种设计模式·全精解析 | 创建型模式篇】5种创建型模式的结构概述、实现、优缺点、扩展、使用场景、源码解析
|
4天前
|
设计模式 存储 安全
【23种设计模式·全精解析 | 创建型模式篇】5种创建型模式的结构概述、实现、优缺点、扩展、使用场景、源码解析
创建型模式的主要关注点是“怎样创建对象?”,它的主要特点是"将对象的创建与使用分离”。这样可以降低系统的耦合度,使用者不需要关注对象的创建细节。创建型模式分为5种:单例模式、工厂方法模式抽象工厂式、原型模式、建造者模式。
【23种设计模式·全精解析 | 创建型模式篇】5种创建型模式的结构概述、实现、优缺点、扩展、使用场景、源码解析
|
5天前
|
安全 搜索推荐 数据挖掘
陪玩系统源码开发流程解析,成品陪玩系统源码的优点
我们自主开发的多客陪玩系统源码,整合了市面上主流陪玩APP功能,支持二次开发。该系统适用于线上游戏陪玩、语音视频聊天、心理咨询等场景,提供用户注册管理、陪玩者资料库、预约匹配、实时通讯、支付结算、安全隐私保护、客户服务及数据分析等功能,打造综合性社交平台。随着互联网技术发展,陪玩系统正成为游戏爱好者的新宠,改变游戏体验并带来新的商业模式。
|
1月前
|
监控 Java 应用服务中间件
高级java面试---spring.factories文件的解析源码API机制
【11月更文挑战第20天】Spring Boot是一个用于快速构建基于Spring框架的应用程序的开源框架。它通过自动配置、起步依赖和内嵌服务器等特性,极大地简化了Spring应用的开发和部署过程。本文将深入探讨Spring Boot的背景历史、业务场景、功能点以及底层原理,并通过Java代码手写模拟Spring Boot的启动过程,特别是spring.factories文件的解析源码API机制。
77 2
|
2月前
|
缓存 Java 程序员
Map - LinkedHashSet&Map源码解析
Map - LinkedHashSet&Map源码解析
82 0
|
2月前
|
算法 Java 容器
Map - HashSet & HashMap 源码解析
Map - HashSet & HashMap 源码解析
67 0
|
2月前
|
存储 Java C++
Collection-PriorityQueue源码解析
Collection-PriorityQueue源码解析
72 0
|
2月前
|
安全 Java 程序员
Collection-Stack&Queue源码解析
Collection-Stack&Queue源码解析
94 0
|
28天前
|
缓存 监控 Java
Java线程池提交任务流程底层源码与源码解析
【11月更文挑战第30天】嘿,各位技术爱好者们,今天咱们来聊聊Java线程池提交任务的底层源码与源码解析。作为一个资深的Java开发者,我相信你一定对线程池并不陌生。线程池作为并发编程中的一大利器,其重要性不言而喻。今天,我将以对话的方式,带你一步步深入线程池的奥秘,从概述到功能点,再到背景和业务点,最后到底层原理和示例,让你对线程池有一个全新的认识。
55 12

推荐镜像

更多