如何区分统计学中的概率与频率

简介: 如何区分统计学中的概率与频率

1 频率


某个事件出现的次数除以总的次数、


从上面那句话,不难发现频率是通过已知的某个具体事件来得出结果。


2 概率


刻画随机事件发生的可能性大小的指标,概率的取值介于0~1之间


概率是基于大数定律得出,根据经验的频率,我们将其作为在未来一次试验中可能发生某一事件的概率。


3 两者的区别与联系


概率是理想值,频率是实验值;例如抛理想均等硬币10000次正反面出现正面的频率是0.5-+, 其 中 ,其中,其中表示误差,然而由大数定律可以证明当频率减去概率的模小于任意正数的时候可以认为在无穷多次实验中的频率值无限收敛与概率值;可以说大数定律是现实和理论的一个纽带,一个桥梁;所以当且仅当实验次数很大时频率和概率可以同台而舞,这就是频率和概率的本质差别


概率和频率的关系是:通过经验频率我们得到在未来发生某一事件的可能性概率。所以如果我们能够得到事件发生的频率,那么就可以预估在相同条件下,事件在未来的一次中发生的概率。


相关链接:

1 为什么很多人都不能区分“概率”和“频率”? - 知乎 (zhihu.com)

2 大数定理的通俗理解(辛钦、伯努利、切比雪夫大数定理) - 知乎 (zhihu.com)

3 概率与频率 - 搜索结果 - 知乎 (zhihu.com)

目录
相关文章
|
2月前
|
算法 搜索推荐 数据可视化
Beta分布与汤普森采样:智能决策系统概率采样的理论基础
在现代技术领域,算法决策优化成为核心竞争力的关键。Meta、Netflix和亚马逊等公司通过广告位置、缩略图及产品推荐的优化,显著提升了用户体验和商业效益。这些优化背后的共同点是采用了基于Beta分布的汤普森采样算法,有效解决了决策系统中探索与利用的平衡问题。通过从概率分布中随机采样来做出决策,汤普森采样不仅保证了对已知良好选项的充分利用,还维持了对潜在更优选项的探索,从而在实践中实现了高效且自适应的决策过程。
80 8
|
2月前
|
机器学习/深度学习 算法 数据可视化
时间序列预测的不确定性区间估计:基于EnbPI的方法与应用研究
本文探讨了时间序列预测中不确定性量化的问题,特别是基于一致性预测理论的EnbPI方法。EnbPI通过集成学习和自举采样技术,解决了传统方法在处理非平稳时间序列数据时的局限性,提供了一种分布无关的预测区间构建方法,支持任意估计器的集成,并在推理阶段保持高效。实验结果显示,EnbPI在德国电力价格预测中表现出良好的覆盖率和适应性,尽管存在一定的计算成本。
62 0
【数理统计实验(一)】统计量近似分布的随机模拟
【数理统计实验(一)】统计量近似分布的随机模拟
|
9月前
|
数据挖掘 数据建模
R语言指数加权模型EWMA预测股市多变量波动率
R语言指数加权模型EWMA预测股市多变量波动率
R语言指数加权模型EWMA预测股市多变量波动率
|
9月前
|
算法 vr&ar Python
R语言隐马尔可夫模型HMM连续序列重要性重抽样CSIR估计随机波动率模型SV分析股票收益率时间序列
R语言隐马尔可夫模型HMM连续序列重要性重抽样CSIR估计随机波动率模型SV分析股票收益率时间序列
|
9月前
|
Windows
R语言有状态依赖强度的非线性、多变量跳跃扩散过程模型似然推断分析股票价格波动
R语言有状态依赖强度的非线性、多变量跳跃扩散过程模型似然推断分析股票价格波动
|
9月前
|
算法 测试技术 vr&ar
用综合信息准则比较随机波动率(SV)模型对股票价格时间序列建模
用综合信息准则比较随机波动率(SV)模型对股票价格时间序列建模
|
9月前
|
数据挖掘
指数加权模型EWMA预测股市多变量波动率时间序列
指数加权模型EWMA预测股市多变量波动率时间序列
|
9月前
|
算法 测试技术 vr&ar
R语言用综合信息准则比较随机波动率(SV)模型对股票价格时间序列建模
R语言用综合信息准则比较随机波动率(SV)模型对股票价格时间序列建模
|
机器学习/深度学习
区间预测 | MATLAB实现QRBiGRU双向门控循环单元分位数回归时间序列区间预测
区间预测 | MATLAB实现QRBiGRU双向门控循环单元分位数回归时间序列区间预测

热门文章

最新文章