python 基于cartopy库绘制台风路径(包含代码详细解释)

简介: python 基于cartopy库绘制台风路径(包含代码详细解释)

使用python基于cartopy库绘制台风路径



a4cb2060da2d48eead767537948ba3a9.png

使用python 绘制西太平洋进入我国的台风路径,文件为.dat格式,内容如下所示:


52ceaea568264894a2d2c8aade17dc85.png


import netCDF4 as nc4
import matplotlib.pyplot as plt
import numpy as np
import datetime
import os
import cartopy.crs as ccrs
path='E://' #文件路径
files= os.listdir(path) #得到文件夹下的所有文件名称
fig=plt.figure(figsize=(20,12)) #设置画布大小
parallels = np.arange(0.,90.,3.) 
meridians = np.arange(0.0,360.,3.)   
ax = plt.axes(projection=ccrs.Robinson())   #设置投影方式
# Set figure extent & ticks
ax.set_extent([100, 150, 5, 50])  #设置纬度范围
# plt.grid(linestyle=':',color='y')#
for file in files:  #按照顺序在 files 里面进行每一个文件的 数据名称 循环读取
    f = open(path+file,'r')   # 打开第一个 dat 文件
    records = f.readlines()   # 读取这个文件里面的所有数据
    f.close()                 # 关闭这个dat文件  
    date_t = ''               # 设置一个用来表示空格
    btk_lat = []              # 设置一个空的 待传入数据的纬度
    btk_lon = []              # 设置一个空的 待传入数据的经度
    btk_vmax = []             # 风速最大值 Maximum sustained wind speed in knots: 0 - 300 kts.
    btk_time = []             # 时间
    btk_rmw = []              # 最大风速半径 radius of max winds, 0 - 999 n mi.
    btk_name = []             # 台风名称
    for rcd in records:       # 对这个dat文件里面,已经读取的每一行数据进行循环处理
        strs = rcd.split(',') #将每一个','分隔开
        if(len(strs)<21):     #判断语句,如果这个被分割开的字符 长度<21 ,继续进行处理
            continue
        date_str = strs[2].strip(' ') #将strs这个list的索引为2的值赋给data_str,既年月日时
        if date_str == date_t:#判读如果是一个空格值,赋给data——str
            continue
        dt = datetime.datetime(int(date_str[0:4]),int(date_str[4:6]),int(date_str[6:8]),\
        int(date_str[8:]),0,0,0)
        btk_time.append(nc4.date2num(dt,units='second since 1970-1-1 00:00:00'))#计算距离给的时间有多少秒,并从后往前排列
        #处理纬度
        lat_str = strs[6].strip()
        #判断南北纬
        if lat_str[-1] == 'N':
            lat_t = float(lat_str[0:-1])*0.1
        else:
            lat_t = float(lat_str[0:-1])*-0.1
        btk_lat.append(lat_t)
        #处理经度
        lon_str = strs[7].strip()
        #判断 东西经
        if lon_str[-1] == 'E':
            lon_t = float(lon_str[0:-1])*0.1
        else:
            lon_t = float(lon_str[0:-1])*-0.1
        btk_lon.append(lon_t)        
        #处理最大风速
        vmax = strs[8].strip()
        btk_vmax.append(float(vmax))#转换为单浮点型,(带小数点)
        #时间
        date_t = date_str
        #最大风速半径
        rmw = strs[19].strip()
        btk_rmw.append(float(rmw))
        #处理台风名称
        if(len(strs) < 27):
            btk_name.append('noname')
        else:
            name = strs[27].strip()
            btk_name.append(name)
#==============================================================================
    btk_lat = np.array(btk_lat) #将得到的list 值转换为数组型的值,为了便于绘图。因为绘图的横纵坐标都是数组排列
    btk_lon = np.array(btk_lon)%360 #因为原始经度为-180 - 0 -180 ,出现断隔,为解决问题,化为 0-360
    btk_time = np.array(btk_time)  #时间转换
    btk_vmax = np.array(btk_vmax)*0.5144 #风速换算公式
    btk_rmw = np.array(btk_rmw)*1.852 #
    #判断,如果数组纬度的值是0,则为nan值,既无法计算的值(无穷大,,),否则即为台风的名称
    if(len(btk_lat) == 0): 
        tc_name = 'noname'
    else:
        index = btk_vmax.argmax()
        tc_name = btk_name[index]
    #进行绘图,经度、纬度曲线
    ax.plot(btk_lon,btk_lat,color='k',linewidth=0.5,transform=ccrs.PlateCarree())
    #散点图绘制,经度、纬度、最大风速,
    cb = ax.scatter(btk_lon,btk_lat,c=btk_vmax,s=10.0,transform=ccrs.PlateCarree()
                    ,vmin=10,vmax=60)
ax.coastlines()
ax.gridlines(draw_labels=True, dms=True, x_inline=False, y_inline=False)
plt.colorbar(cb,label='Vmax (m/s)',pad=0.07,orientation='vertical',shrink=1)
plt.title('  path')
# 保存绘制图片 ,注意保存路径不能放在dat文件夹中     
#fig.savefig(path2+'tester.tiff',format='tiff',dpi=100)


相关文章
|
1天前
|
数据采集 数据可视化 数据处理
如何使用Python实现一个交易策略。主要步骤包括:导入所需库(如`pandas`、`numpy`、`matplotlib`)
本文介绍了如何使用Python实现一个交易策略。主要步骤包括:导入所需库(如`pandas`、`numpy`、`matplotlib`),加载历史数据,计算均线和其他技术指标,实现交易逻辑,记录和可视化交易结果。示例代码展示了如何根据均线交叉和价格条件进行开仓、止损和止盈操作。实际应用时需注意数据质量、交易成本和风险管理。
12 5
|
4天前
|
开发者 Python
探索Python中的装饰器:简化代码,增强功能
【10月更文挑战第22天】在Python的世界里,装饰器是一个强大的工具,它能够让我们以简洁的方式修改函数的行为,增加额外的功能而不需要重写原有代码。本文将带你了解装饰器的基本概念,并通过实例展示如何一步步构建自己的装饰器,从而让你的代码更加高效、易于维护。
|
1天前
|
算法 测试技术 开发者
在Python开发中,性能优化和代码审查至关重要。性能优化通过改进代码结构和算法提高程序运行速度,减少资源消耗
在Python开发中,性能优化和代码审查至关重要。性能优化通过改进代码结构和算法提高程序运行速度,减少资源消耗;代码审查通过检查源代码发现潜在问题,提高代码质量和团队协作效率。本文介绍了一些实用的技巧和工具,帮助开发者提升开发效率。
6 3
|
5天前
|
开发框架 Python
探索Python中的装饰器:简化代码,增强功能
【10月更文挑战第20天】在编程的海洋中,简洁与强大是航行的双桨。Python的装饰器,这一高级特性,恰似海风助力,让代码更优雅、功能更强大。本文将带你领略装饰器的奥秘,从基础概念到实际应用,一步步深入其内涵与意义。
|
4天前
|
机器学习/深度学习 缓存 数据挖掘
Python性能优化:提升你的代码效率
【10月更文挑战第22天】 Python性能优化:提升你的代码效率
8 1
|
6天前
|
机器人 Shell Linux
【Azure Bot Service】部署Python ChatBot代码到App Service中
本文介绍了使用Python编写的ChatBot在部署到Azure App Service时遇到的问题及解决方案。主要问题是应用启动失败,错误信息为“Failed to find attribute &#39;app&#39; in &#39;app&#39;”。解决步骤包括:1) 修改`app.py`文件,添加`init_func`函数;2) 配置`config.py`,添加与Azure Bot Service认证相关的配置项;3) 设置App Service的启动命令为`python3 -m aiohttp.web -H 0.0.0.0 -P 8000 app:init_func`。
|
4天前
|
缓存 算法 数据处理
Python性能优化:提升代码效率与速度的秘诀
【10月更文挑战第22天】Python性能优化:提升代码效率与速度的秘诀
8 0
|
7天前
|
安全 数据处理 开发者
Python中的多线程编程:从入门到精通
本文将深入探讨Python中的多线程编程,包括其基本原理、应用场景、实现方法以及常见问题和解决方案。通过本文的学习,读者将对Python多线程编程有一个全面的认识,能够在实际项目中灵活运用。
|
1天前
|
设计模式 开发者 Python
Python编程中的设计模式:工厂方法模式###
本文深入浅出地探讨了Python编程中的一种重要设计模式——工厂方法模式。通过具体案例和代码示例,我们将了解工厂方法模式的定义、应用场景、实现步骤以及其优势与潜在缺点。无论你是Python新手还是有经验的开发者,都能从本文中获得关于如何在实际项目中有效应用工厂方法模式的启发。 ###
|
6天前
|
弹性计算 安全 小程序
编程之美:Python让你领略浪漫星空下的流星雨奇观
这段代码使用 Python 的 `turtle` 库实现了一个流星雨动画。程序通过创建 `Meteor` 类来生成具有随机属性的流星,包括大小、颜色、位置和速度。在无限循环中,流星不断移动并重新绘制,营造出流星雨的效果。环境需求为 Python 3.11.4 和 PyCharm 2023.2.5。
26 9