循环生成网络 CycleGan 原理介绍(一)

简介: 循环生成网络 CycleGan 原理介绍(一)

介绍

循环生成对抗网络(简称CycleGans)[1]是功能强大的计算机算法,具有改善数字生态系统的潜力。它们能够将信息从一种表示形式转换为另一种表示形式。例如,当给定图像时,他们可以对其进行模糊处理,着色(如果其最初是黑白的),提高其清晰度或填补缺失的空白。

它们比传统的设计/生产/写作软件更强大。因为CycleGans是机器学习算法,所以它们原则上可以学习实现所需的任何转换。相反,传统的转换软件(例如Photoshop)通常经过编码和开发以执行特定任务。而且,CycleGans可以从现有的软件获得更高的性能,因为它们可以从数据中学习并随着收集的数据的增加而提高效果。

了解CycleGans不同级别的工作原理和能力令人兴奋,下面还介绍了有关人工智能如何以前所未有的方式影响我们日常的见解。


生成对抗网络

在讨论CycleGans之前,让我们简要讨论常规的生成对抗网络。

生成对抗网络(简称GAN)[2]是能够创建数据的机器学习算法。当向他们提供诸如图像,声音或文本之类的信息时,他们学会生成新的外观/声音相似的输出。例如:给定一组人脸图像,该算法可以自学(通过机器学习数据进行训练)人脸的外观,并能够创建新人脸。

CycleGAN是传统GAN的特殊变体。他们也可以创建新的数据样本,但是通过转换输入样本来实现,而不是从头开始创建。换句话说,他们学会了从两个数据源转换数据。这些数据可由提供此算法数据集的科学家或开发人员进行选择。在两个数据源是狗的图片和猫的图片的情况下,该算法能够有效地能够将猫的图像转换为狗的图像,反之亦然。

他们是怎么做到的呢?

什么是CycleGan?

CycleGan是一个神经网络,可以学习两个域之间的两个数据转换函数。其中之一是G(x)。它将给定样本x∈X转换为域Y的元素。第二个是F(y),它将样本元素y∈Y转换为域X的元素。

image.png

两个GAN,一个CycleGAN


为了学习F和G,使用了两个传统的GAN。每个GAN内部都有一个生成器网络,该网络学习如何根据需要转换数据。GAN的第一生成器学习计算F,GAN的第二生成器学习计算G。

image.png

生成器函数G和F的定义。

此外,每个生成器都与一个鉴别器相关联,该鉴别器学习将实际数据y与合成数据G(x)区分开。

image.png

生成器函数G和F的定义。

因此,CycleGAN由两个生成器和两个鉴别器组成,它们学习变换函数F和G。此结构显示在下图中:

image.png

CycleGan表示形式。它由两个GAN组成,它们学习两个转换。

目录
相关文章
|
19天前
|
网络协议 安全 5G
网络与通信原理
【10月更文挑战第14天】网络与通信原理涉及众多方面的知识,从信号处理到网络协议,从有线通信到无线通信,从差错控制到通信安全等。深入理解这些原理对于设计、构建和维护各种通信系统至关重要。随着技术的不断发展,网络与通信原理也在不断演进和完善,为我们的生活和工作带来了更多的便利和创新。
58 3
|
1天前
|
运维 物联网 网络虚拟化
网络功能虚拟化(NFV):定义、原理及应用前景
网络功能虚拟化(NFV):定义、原理及应用前景
10 3
|
12天前
|
网络协议 安全 算法
网络空间安全之一个WH的超前沿全栈技术深入学习之路(9):WireShark 简介和抓包原理及实战过程一条龙全线分析——就怕你学成黑客啦!
实战:WireShark 抓包及快速定位数据包技巧、使用 WireShark 对常用协议抓包并分析原理 、WireShark 抓包解决服务器被黑上不了网等具体操作详解步骤;精典图示举例说明、注意点及常见报错问题所对应的解决方法IKUN和I原们你这要是学不会我直接退出江湖;好吧!!!
网络空间安全之一个WH的超前沿全栈技术深入学习之路(9):WireShark 简介和抓包原理及实战过程一条龙全线分析——就怕你学成黑客啦!
|
23天前
|
机器学习/深度学习 人工智能 监控
深入理解深度学习中的卷积神经网络(CNN):从原理到实践
【10月更文挑战第14天】深入理解深度学习中的卷积神经网络(CNN):从原理到实践
70 1
|
25天前
|
网络协议 Linux 应用服务中间件
Socket通信之网络协议基本原理
【10月更文挑战第10天】网络协议定义了机器间通信的标准格式,确保信息准确无损地传输。主要分为两种模型:OSI七层模型与TCP/IP模型。
|
1月前
|
存储 安全 算法
网络安全与信息安全:构建数字世界的防线在数字化浪潮席卷全球的今天,网络安全与信息安全已成为维系现代社会正常运转的关键支柱。本文旨在深入探讨网络安全漏洞的成因与影响,剖析加密技术的原理与应用,并强调提升公众安全意识的重要性。通过这些综合性的知识分享,我们期望为读者提供一个全面而深刻的网络安全视角,助力个人与企业在数字时代中稳健前行。
本文聚焦网络安全与信息安全领域,详细阐述了网络安全漏洞的潜在威胁、加密技术的强大防护作用以及安全意识培养的紧迫性。通过对真实案例的分析,文章揭示了网络攻击的多样性和复杂性,强调了构建全方位、多层次防御体系的必要性。同时,结合当前技术发展趋势,展望了未来网络安全领域的新挑战与新机遇,呼吁社会各界共同努力,共筑数字世界的安全防线。
|
1月前
|
存储 安全 自动驾驶
探索未来网络:量子互联网的原理与应用
【10月更文挑战第2天】 本文旨在探讨量子互联网的基本原理、技术实现及其在通讯领域的革命性应用前景。量子互联网利用量子力学原理,如量子叠加和量子纠缠,来传输信息,有望大幅提升通信的安全性和速度。通过详细阐述量子密钥分发(QKD)、量子纠缠交换和量子中继等关键技术,本文揭示了量子互联网对未来信息社会的潜在影响。
|
12天前
|
网络协议 安全 算法
网络空间安全之一个WH的超前沿全栈技术深入学习之路(9-2):WireShark 简介和抓包原理及实战过程一条龙全线分析——就怕你学成黑客啦!
实战:WireShark 抓包及快速定位数据包技巧、使用 WireShark 对常用协议抓包并分析原理 、WireShark 抓包解决服务器被黑上不了网等具体操作详解步骤;精典图示举例说明、注意点及常见报错问题所对应的解决方法IKUN和I原们你这要是学不会我直接退出江湖;好吧!!!
|
24天前
|
机器学习/深度学习 算法 数据建模
计算机前沿技术-人工智能算法-生成对抗网络-算法原理及应用实践
计算机前沿技术-人工智能算法-生成对抗网络-算法原理及应用实践
24 0
|
1月前
|
机器学习/深度学习 存储 自然语言处理
深度学习入门:循环神经网络------RNN概述,词嵌入层,循环网络层及案例实践!(万字详解!)
深度学习入门:循环神经网络------RNN概述,词嵌入层,循环网络层及案例实践!(万字详解!)