Tensorflow MobileNet移植到Android

简介: Tensorflow MobileNet移植到Android

Tensorflow MobileNet移植到Android


最近看到一个巨牛的人工智能教程,分享一下给大家。教程不仅是零基础,通俗易懂,而且非常风趣幽默,像看小说一样!觉得太牛了,所以分享给大家。平时碎片时间可以当小说看,【点这里可以去膜拜一下大神的“小说”】。

1 CKPT模型转换pb文件

使用上一篇博客《MobileNet V1官方预训练模型的使用》中下载的MobileNet V1官方预训练的模型《MobileNet_v1_1.0_192》。虽然打包下载的文件中包含已经转换过的pb文件,但是官方提供的pb模型输出是1001类别对应的概率,我们需要的是概率最大的3类。可在原始网络中使用函数tf.nn.top_k获取概率最大的3类,将函数tf.nn.top_k作为网络中的一个计算节点。模型转换代码如下所示。

import tensorflow as tf
from mobilenet_v1 import mobilenet_v1,mobilenet_v1_arg_scope 
import numpy as np
slim = tf.contrib.slim
CKPT = 'mobilenet_v1_1.0_192.ckpt'  
def build_model(inputs):   
    with slim.arg_scope(mobilenet_v1_arg_scope(is_training=False)):
        logits, end_points = mobilenet_v1(inputs, is_training=False, depth_multiplier=1.0, num_classes=1001)
    scores = end_points['Predictions']
    print(scores)
    #取概率最大的3个类别及其对应概率
    output = tf.nn.top_k(scores, k=3, sorted=True)
    #indices为类别索引,values为概率值
    return output.indices,output.values
def load_model(sess):
    loader = tf.train.Saver()
    loader.restore(sess,CKPT)
inputs=tf.placeholder(dtype=tf.float32,shape=(1,192,192,3),name='input')
classes_tf,scores_tf = build_model(inputs)  
classes = tf.identity(classes_tf, name='classes')
scores = tf.identity(scores_tf, name='scores') 
with tf.Session() as sess:
    load_model(sess)
    graph = tf.get_default_graph()
    output_graph_def = tf.graph_util.convert_variables_to_constants(
        sess, graph.as_graph_def(), [classes.op.name,scores.op.name]) 
    tf.train.write_graph(output_graph_def, 'model', 'mobilenet_v1_1.0_192.pb', as_text=False)

上面代码中,单一的所有类别概率经过计算节点tf.nn.top_k后分为两个输出:概率最大的3个类别classes,概率最大的3个类别的概率scores。执行上面代码后,在目录“model”中得到文件mobilenet_v1_1.0_192.pb。

2 移植到Android中

2.1 AndroidStudio中使用Tensorflow Mobile

首先,AndroidStudio版本必须是3.0及以上。创建Android Project后,在Module:app的build.gradle文件中的dependencies中加入如下:

 compile 'org.tensorflow:tensorflow-android:+'

2.2 Tensorflow Mobile接口

使用Tensorflow Mobile库中模型调用封装类org.tensorflow.contrib.android.TensorFlowInferenceInterface完成模型的调用,主要使用的如下函数。

 public TensorFlowInferenceInterface(AssetManager assetManager, String model){...}
 public void feed(String inputName, float[] src, long... dims) {...}
 public void run(String[] outputNames) {...}
 public void fetch(String outputName, int[] dst) {...}

其中,构造函数中的参数model表示目录“assets”中模型名称。feed函数中参数inputName表示输入节点的名称,即对应模型转换时指定输入节点的名称“input”,参数src表示输入数据数组,变长参数dims表示输入的维度,如传入1,192,192,3则表示输入数据的Shape=[1,192,192,3]。函数run的参数outputNames表示执行从输入节点到outputNames中节点的所有路径。函数fetch中参数outputName表示输出节点的名称,将指定的输出节点的数据拷贝到dst中。

2.3 Bitmap对象转float[]

注意到,在2.1小节中函数feed传入到输入节点的数据对象是float[]。因此有必要将Bitmap转为float[]对象,示例代码如下所示。

    //读取Bitmap像素值,并放入到浮点数数组中。归一化到[-1,1]
    private float[] getFloatImage(Bitmap bitmap){
        Bitmap bm = getResizedBitmap(bitmap,inputWH,inputWH);
        bm.getPixels(inputIntData, 0, bm.getWidth(), 0, 0, bm.getWidth(), bm.getHeight());
        for (int i = 0; i < inputIntData.length; ++i) {
            final int val = inputIntData[i];
            inputFloatData[i * 3 + 0] =(float) (((val >> 16) & 0xFF)/255.0-0.5)*2;
            inputFloatData[i * 3 + 1] = (float)(((val >> 8) & 0xFF)/255.0-0.5)*2;
            inputFloatData[i * 3 + 2] = (float)(( val & 0xFF)/255.0-0.5)*2 ;
        }
        return inputFloatData;
    }

由于MobileNet V1预训练的模型输入数据归一化到[-1,1],因此在函数getFloatImage中转换数据的同时将数据归一化到[-1,1]。

2.4 封装模型调用

为了便于调用,将与模型相关的调用函数封装到类TFModelUtils中,通过TFModelUtils的run函数完成模型的调用,示例代码如下所示。

package com.huachao.mn_v1_192; 
import android.content.res.AssetManager;
import android.graphics.Bitmap;
import android.graphics.Matrix;
import android.util.Log; 
import org.tensorflow.contrib.android.TensorFlowInferenceInterface; 
import java.io.BufferedReader;
import java.io.InputStream;
import java.io.InputStreamReader;
import java.util.HashMap;
import java.util.Map; 
public class TFModelUtils {
    private TensorFlowInferenceInterface inferenceInterface;
    private int[] inputIntData ;
    private float[] inputFloatData ;
    private int inputWH;
    private String inputName;
    private String[] outputNames; 
    private Map<Integer,String> dict;
    public TFModelUtils(AssetManager assetMngr,int inputWH,String inputName,String[]outputNames,String modelName){
        this.inputWH=inputWH;
        this.inputName=inputName;
        this.outputNames=outputNames;
        this.inputIntData=new int[inputWH*inputWH];
        this.inputFloatData = new float[inputWH*inputWH*3];
        //从assets目录加载模型
        inferenceInterface= new TensorFlowInferenceInterface(assetMngr, modelName);
        this.loadLabel(assetMngr);
    }
    public Map<String,Object> run(Bitmap bitmap){ 
        float[] inputData = getFloatImage(bitmap);
        //将输入数据复制到TensorFlow中,指定输入Shape=[1,INPUT_WH,INPUT_WH,3]
        inferenceInterface.feed(inputName, inputData, 1, inputWH, inputWH, 3); 
        // 执行模型
        inferenceInterface.run( outputNames ); 
        //将输出Tensor对象复制到指定数组中
        int[] classes=new int[3];
        float[] scores=new float[3];
        inferenceInterface.fetch(outputNames[0], classes);
        inferenceInterface.fetch(outputNames[1], scores);
        Map<String,Object> results=new HashMap<>();
        results.put("scores",scores);
        String[] classesLabel = new String[3];
        for(int i =0;i<3;i++){
            int idx=classes[i];
            classesLabel[i]=dict.get(idx);
//            System.out.printf("classes:"+dict.get(idx)+",scores:"+scores[i]+"\n");
        }
        results.put("classes",classesLabel);
        return results;
    }
    //读取Bitmap像素值,并放入到浮点数数组中。归一化到[-1,1]
    private float[] getFloatImage(Bitmap bitmap){
        Bitmap bm = getResizedBitmap(bitmap,inputWH,inputWH);
        bm.getPixels(inputIntData, 0, bm.getWidth(), 0, 0, bm.getWidth(), bm.getHeight());
        for (int i = 0; i < inputIntData.length; ++i) {
            final int val = inputIntData[i];
            inputFloatData[i * 3 + 0] =(float) (((val >> 16) & 0xFF)/255.0-0.5)*2;
            inputFloatData[i * 3 + 1] = (float)(((val >> 8) & 0xFF)/255.0-0.5)*2;
            inputFloatData[i * 3 + 2] = (float)(( val & 0xFF)/255.0-0.5)*2 ;
        }
        return inputFloatData;
    }
    //对图像做Resize
    public Bitmap getResizedBitmap(Bitmap bm, int newWidth, int newHeight) {
        int width = bm.getWidth();
        int height = bm.getHeight();
        float scaleWidth = ((float) newWidth) / width;
        float scaleHeight = ((float) newHeight) / height;
        Matrix matrix = new Matrix();
        matrix.postScale(scaleWidth, scaleHeight);
        Bitmap resizedBitmap = Bitmap.createBitmap( bm, 0, 0, width, height, matrix, false);
        bm.recycle();
        return resizedBitmap;
    }
    private void loadLabel( AssetManager assetManager ) {
        dict=new HashMap<>();
        try {
            InputStream stream = assetManager.open("label.txt");
            InputStreamReader isr=new InputStreamReader(stream);
            BufferedReader br=new BufferedReader(isr);
            String line;
            while((line=br.readLine())!=null){
                line=line.trim();
                String[] arr = line.split(",");
                if(arr.length!=2)
                    continue;
                int key=Integer.parseInt(arr[0]);
                String value = arr[1];
                dict.put(key,value);
            }
        }catch (Exception e){
            e.printStackTrace();
            Log.e("ERROR",e.getMessage());
        }
    }
}

3 模型测试

微信图片_20221214205401.jpg

4 AndroidStudio项目附件下载

https://download.csdn.net/download/huachao1001/10739854

相关文章
|
Java TensorFlow 算法框架/工具
Android 中集成 TensorFlow Lite图片识别
Android 中集成 TensorFlow Lite图片识别
120 0
|
3月前
|
开发者 算法 虚拟化
惊爆!Uno Platform 调试与性能分析终极攻略,从工具运用到代码优化,带你攻克开发难题成就完美应用
【8月更文挑战第31天】在 Uno Platform 中,调试可通过 Visual Studio 设置断点和逐步执行代码实现,同时浏览器开发者工具有助于 Web 版本调试。性能分析则利用 Visual Studio 的性能分析器检查 CPU 和内存使用情况,还可通过记录时间戳进行简单分析。优化性能涉及代码逻辑优化、资源管理和用户界面简化,综合利用平台提供的工具和技术,确保应用高效稳定运行。
83 0
|
11月前
|
移动开发 Shell 测试技术
Realtek蓝牙Android10.0移植结束后的基本测试和常见问题分析
Realtek蓝牙Android10.0移植结束后的基本测试和常见问题分析
|
Linux 编译器 开发工具
Android11.0(R) MTK6765 TP 驱动移植调试排错过程
Android11.0(R) MTK6765 TP 驱动移植调试排错过程
488 0
|
缓存 网络协议 Java
Android O/P/Q 版本移植iperf网络性能测试工具
Android O/P/Q 版本移植iperf网络性能测试工具
503 0
Android10(Q) GMS 全家桶移植
Android10(Q) GMS 全家桶移植
228 0
|
机器学习/深度学习 Java 物联网
Android TensorFlow Lite 初探 数字分类器(JAVA DEMO)
Android TensorFlow Lite 初探 数字分类器(JAVA DEMO)
272 0
Android TensorFlow Lite 初探 数字分类器(JAVA DEMO)
|
3天前
|
搜索推荐 Android开发 开发者
探索安卓开发中的自定义视图:打造个性化UI组件
【10月更文挑战第39天】在安卓开发的世界中,自定义视图是实现独特界面设计的关键。本文将引导你理解自定义视图的概念、创建流程,以及如何通过它们增强应用的用户体验。我们将从基础出发,逐步深入,最终让你能够自信地设计和实现专属的UI组件。
|
5天前
|
Android开发 Swift iOS开发
探索安卓与iOS开发的差异和挑战
【10月更文挑战第37天】在移动应用开发的广阔舞台上,安卓和iOS这两大操作系统扮演着主角。它们各自拥有独特的特性、优势以及面临的开发挑战。本文将深入探讨这两个平台在开发过程中的主要差异,从编程语言到用户界面设计,再到市场分布的不同影响,旨在为开发者提供一个全面的视角,帮助他们更好地理解并应对在不同平台上进行应用开发时可能遇到的难题和机遇。

热门文章

最新文章

推荐镜像

更多