嵌入式linux/鸿蒙开发板(IMX6ULL)开发(三十一)驱动进化之路:设备树的引入及简明教程(上)

简介: 嵌入式linux/鸿蒙开发板(IMX6ULL)开发(三十一)驱动进化之路:设备树的引入及简明教程

1.驱动进化之路:设备树的引入及简明教程


官方文档(可以下载到devicetree-specification-v0.2.pdf):链接


内核文档: Documentation/devicetree/booting-without-of.txt


韦老师录制“设备树视频”时写的文档:设备树详细分析.txt

这个txt文件也同步上传到wiki了:链接


我录制的设备树视频,它是基于s3c2440的,用的是linux 4.19;需要深入研究的可以看该视频(收费)。

注意,如果只是想入门,看本文档及视频即可。


1.1 设备树的引入与作用


以LED驱动为例,如果你要更换LED所用的GPIO引脚,需要修改驱动程序源码、重新编译驱动、重新加载驱动。

在内核中,使用同一个芯片的板子,它们所用的外设资源不一样,比如A板用GPIO A,B板用GPIO B。而GPIO的驱动程序既支持GPIOA也支持GPIO B,你需要指定使用哪一个引脚,怎么指定?在c代码中指定。

随着ARM芯片的流行,内核中针对这些ARM板保存有大量的、没有技术含量的文件。 Linus大发雷霆:“this whole ARM thing is a f*cking pain in the ass”。 于是,Linux内核开始引入设备树。


设备树并不是重新发明出来的,在Linux内核中其他平台如PowerPC,早就使用设备树来描述硬件了。Linus发火之后,内核开始全面使用设备树来改造,神人就神人。有一种错误的观点,说“新驱动都是用设备树来写了”。 设备树不可能用来写驱动。

请想想,要操作硬件就需要去操作复杂的寄存器,如果设备树可以操作寄存器,那么它就是“驱动”,它就一样很复杂。

设备树只是用来给内核里的驱动程序,指定硬件的信息。比如LED驱动,在内核的驱动程序里去操作寄存器,但是操作哪一个引脚?这由设备树指定。


你可以事先体验一下设备树,板子启动后执行下面的命令:

# ls /sys/firmware/
devicetree  fdt


/sys/firmware/devicetree目录下是以目录结构程现的dtb文件, 根节点对应base目录, 每一个节点对应一个目录,每一个属性对应一个文件。 这些属性的值如果是字符串,可以使用cat命令把它打印出来;对于数值,可以用hexdump把它打印出来。

一个单板启动时,u-boot先运行,它的作用是启动内核。U-boot会把内核和设备树文件都读入内存,然后启动内核。在启动内核时会把设备树在内存中的地址告诉内核。


1.2 设备树的语法


为什么叫“树”?

1670918920169.jpg

怎么描述这棵树? 我们需要编写设备树文件(dts: device tree source),它需要编译为dtb(device tree blob)文件,内核使用的是dtb文件。 dts文件是根本,它的语法很简单。

下面是一个设备树示例:

1670918930638.jpg

它对应的dts文件如下:

1670918940935.jpg


1.2.1 Devicetree格式


1.2.1.1 DTS文件的格式


DTS文件布局(layout):

/dts-v1/;                // 表示版本
[memory reservations]    // 格式为: /memreserve/ <address> <length>;
/ {
    [property definitions]
    [child nodes]
};


1.2.1.2 node的格式


设备树中的基本单元,被称为“node”,其格式为:

[label:] node-name[@unit-address] {
    [properties definitions]
    [child nodes]
};


label是标号,可以省略。label的作用是为了方便地引用node,比如:

/dts-v1/;
/ {
  uart0: uart@fe001000 {
         compatible="ns16550";
        reg=<0xfe001000 0x100>;
  };
};


可以使用下面2种方法来修改uart@fe001000这个node:

// 在根节点之外使用label引用node:
&uart0 {
    status = “disabled”;
};
或在根节点之外使用全路径:
&{/uart@fe001000}  {
    status = “disabled”;
};


1.2.1.3 properties的格式


简单地说,properties就是“name=value”,value有多种取值方式。 Property格式1:

[label:] property-name = value;

Property格式2(没有值):

[label:] property-name;

Property取值只有3种:

arrays of cells(1个或多个32位数据, 64位数据使用2个32位数据表示), 
string(字符串), 
bytestring(1个或多个字节)


示例:


a. Arrays of cells : cell就是一个32位的数据,用尖括号包围起来

interrupts = <17 0xc>;

b. 64bit数据使用2个cell来表示,用尖括号包围起来:

clock-frequency = <0x00000001 0x00000000>;

c. A null-terminated string (有结束符的字符串),用双引号包围起来:

compatible = "simple-bus";

d. A bytestring(字节序列) ,用中括号包围起来:

local-mac-address = [00 00 12 34 56 78];  // 每个byte使用2个16进制数来表示
local-mac-address = [000012345678];       // 每个byte使用2个16进制数来表示


e. 可以是各种值的组合, 用逗号隔开:

compatible = "ns16550", "ns8250";
example = <0xf00f0000 19>, "a strange property format";


1.2.2 dts文件包含dtsi文件


设备树文件不需要我们从零写出来,内核支持了某款芯片比如imx6ull,在内核的arch/arm/boot/dts目录下就有了能用的设备树模板,一般命名为xxxx.dtsi。“i”表示“include”,被别的文件引用的。


我们使用某款芯片制作出了自己的单板,所用资源跟xxxx.dtsi是大部分相同,小部分不同,所以需要引脚xxxx.dtsi并修改。dtsi文件跟dts文件的语法是完全一样的。


dts中可以包含.h头文件,也可以包含dtsi文件,在.h头文件中可以定义一些宏。 示例:

/dts-v1/;
#include <dt-bindings/input/input.h>
#include "imx6ull.dtsi"
/ {
……
};


1.2.3 常用的属性


1.2.3.1 #address-cells、#size-cells


cell指一个32位的数值, address-cells:address要用多少个32位数来表示;

size-cells:size要用多少个32位数来表示。比如一段内存,怎么描述它的起始地址和大小?

下例中,address-cells为1,所以reg中用1个数来表示地址,即用0x80000000来表示地址;size-cells为1,所以reg中用1个数来表示大小,即用0x20000000表示大小:

/ {
#address-cells = <1>;
#size-cells = <1>;
memory {
reg = <0x80000000 0x20000000>;
    };
};


1.2.3.2 compatible


“compatible”表示“兼容”,对于某个LED,内核中可能有A、B、C三个驱动都支持它,那可以这样写:

led {
compatible = “A”, “B”, “C”;
};


内核启动时,就会为这个LED按这样的优先顺序为它找到驱动程序:A、B、C。


根节点下也有compatible属性,用来选择哪一个“machine desc”:一个内核可以支持machine A,也支持machine B,内核启动后会根据根节点的compatible属性找到对应的machine desc结构体,执行其中的初始化函数。

compatible的值,建议取这样的形式:"manufacturer,model",即“厂家名,模块名”。


注意:machine desc的意思就是“机器描述”,学到内核启动流程时才涉及。


1.2.3.3 model


model属性与compatible属性有些类似,但是有差别。

compatible属性是一个字符串列表,表示可以你的硬件兼容A、B、C等驱动; model用来准确地定义这个硬件是什么。

比如根节点中可以这样写:

/ {
  compatible = "samsung,smdk2440", "samsung,mini2440";
  model = "jz2440_v3";
};


它表示这个单板,可以兼容内核中的“smdk2440”,也兼容“mini2440”。

从compatible属性中可以知道它兼容哪些板,但是它到底是什么板?用model属性来明确。


1.2.3.4 status


dtsi文件中定义了很多设备,但是在你的板子上某些设备是没有的。这时你可以给这个设备节点添加一个status属性,设置为“disabled”:

&uart1 {
      status = "disabled";
};

1670919140584.jpg


1.2.3.5 reg


reg的本意是register,用来表示寄存器地址。

但是在设备树里,它可以用来描述一段空间。反正对于ARM系统,寄存器和内存是统一编址的,即访问寄存器时用某块地址,访问内存时用某块地址,在访问方法上没有区别。reg属性的值,是一系列的“address size”,用多少个32位的数来表示address和size,由其父节点的#address-cells、#size-cells决定。 示例:

/dts-v1/;
/ {
#address-cells = <1>;
#size-cells = <1>; 
memory {
reg = <0x80000000 0x20000000>;
};
};


1.2.3.6 name(过时了,建议不用)


它的值是字符串,用来表示节点的名字。在跟platform_driver匹配时,优先级最低。 compatible属性在匹配过程中,优先级最高。


1.2.3.7 device_type(过时了,建议不用)


它的值是字符串,用来表示节点的类型。在跟platform_driver匹配时,优先级为中。

compatible属性在匹配过程中,优先级最高。


1.2.4 常用的节点(node)


1.2.4.1 根节点


dts文件中必须有一个根节点:

/dts-v1/;
/ {
model = "SMDK24440";
compatible = "samsung,smdk2440";
#address-cells = <1>;
#size-cells = <1>; 
};


根节点中必须有这些属性:

#address-cells // 在它的子节点的reg属性中, 使用多少个u32整数来描述地址(address)
#size-cells   // 在它的子节点的reg属性中, 使用多少个u32整数来描述大小(size)
compatible   // 定义一系列的字符串, 用来指定内核中哪个machine_desc可以支持本设备
            // 即这个板子兼容哪些平台 
            // uImage : smdk2410 smdk2440 mini2440     ==> machine_desc         
model       // 咱这个板子是什么
            // 比如有2款板子配置基本一致, 它们的compatible是一样的
            // 那么就通过model来分辨这2款板子


1.2.4.2 CPU节点


一般不需要我们设置,在dtsi文件中都定义好了:

cpus {
  #address-cells = <1>;
  #size-cells = <0>;
  cpu0: cpu@0 {
      .......
        }
};


1.2.4.3 memory节点


芯片厂家不可能事先确定你的板子使用多大的内存,所以memory节点需要板厂设置,比如:

memory {
reg = <0x80000000 0x20000000>;
};


1.2.4.4 chosen节点


我们可以通过设备树文件给内核传入一些参数,这要在chosen节点中设置bootargs属性:

chosen {
bootargs = "noinitrd root=/dev/mtdblock4 rw init=/linuxrc console=ttySAC0,115200";
};
相关文章
|
1月前
|
Linux Docker 容器
Centos安装docker(linux安装docker)——超详细小白可操作手把手教程,包好用!!!
本篇博客重在讲解Centos安装docker,经博主多次在不同服务器上测试,极其的稳定,尤其是阿里的服务器,一路复制命令畅通无阻。
231 4
Centos安装docker(linux安装docker)——超详细小白可操作手把手教程,包好用!!!
|
14天前
|
关系型数据库 MySQL Linux
基于阿里云服务器Linux系统安装Docker完整图文教程(附部署开源项目)
基于阿里云服务器Linux系统安装Docker完整图文教程(附部署开源项目)
139 2
|
1月前
|
Linux C语言 C++
vsCode远程执行c和c++代码并操控linux服务器完整教程
这篇文章提供了一个完整的教程,介绍如何在Visual Studio Code中配置和使用插件来远程执行C和C++代码,并操控Linux服务器,包括安装VSCode、安装插件、配置插件、配置编译工具、升级glibc和编写代码进行调试的步骤。
157 0
vsCode远程执行c和c++代码并操控linux服务器完整教程
|
1月前
|
Linux 开发工具 Docker
各个类linux服务器安装docker教程
各个类linux服务器安装docker教程
54 0
|
2天前
|
UED 开发者
鸿蒙next版开发:ArkTS组件通用属性(运动模糊)
在HarmonyOS 5.0中,ArkTS引入了运动模糊功能,允许开发者为组件添加动态模糊效果,增强视觉表现。本文详细解读了运动模糊的属性和使用方法,并提供了示例代码。运动模糊可增强视觉效果、提升用户体验和实现动态效果,适用于多种场景。
78 2
|
2天前
|
开发者 UED 容器
鸿蒙next版开发:ArkTS组件通用属性(图像效果)
在HarmonyOS 5.0中,ArkTS提供了丰富的图像效果属性,如阴影、灰度、高光、饱和度、对比度、图像反转、叠色、色相旋转等,极大丰富了用户界面的表现力。本文详细介绍这些属性并提供示例代码。
57 2
|
2天前
|
UED
鸿蒙next版开发:ArkTS组件通用属性(前景色设置)
在HarmonyOS 5.0中,ArkTS提供了丰富的组件样式设置能力,包括前景色设置。本文详细解读了ArkTS中前景色设置的通用属性,并通过示例代码展示了如何使用foregroundColor属性设置组件的前景色,从而提升界面美观性和用户体验。
59 1
|
2天前
|
JavaScript 开发者 索引
鸿蒙next版开发:ArkTS组件通用属性(复用标识)
在HarmonyOS 5.0中,ArkTS的复用标识(Reused Identifier)是关键机制,用于标识和引用组件,特别是在列表渲染和组件复用中。本文详细解读了复用标识的通用属性和作用,并提供了示例代码,帮助开发者提高应用性能和效率。
55 1
|
2天前
|
UED 开发者
鸿蒙next版开发:ArkTS组件通用属性(多态样式)
在HarmonyOS 5.0中,ArkTS的多态样式(stateStyles)功能允许开发者根据不同状态(如正常、按压、禁用、聚焦、选中等)为组件设置不同的样式,从而提供更丰富的用户体验。通过stateStyles属性,可以动态改变组件样式,提升用户交互的直观性和界面美观性。示例代码展示了如何为文本组件设置正常和按压状态的样式。
55 1
|
2天前
|
开发者
鸿蒙next版开发:ArkTS组件通用属性(组件标识)
在HarmonyOS 5.0中,ArkTS的组件标识(ID)为每个组件提供唯一标识符,方便开发者引用和操作组件。本文详细解读了id和key属性的使用方法,并提供了示例代码,展示了如何通过组件标识获取属性、发送事件及动态操作组件。
56 1