去中心化项目系统开发技术原理

简介: 去中心化项目系统开发技术原理

  

  PTime-Series:以时间为索引的Series。

  DataFrame:二维的表格型数据结构。很多功能与R中的data.frame类似。可以将DataFrame理解为Series的容器。

  Panel:三维的数组,可以理解为DataFrame的容器。Panel4D:是像Panel一样的4维数据容器。PanelND:拥有factory集合,可以创建像Panel4D一样N维命名容器的模块。

  运用Pandas的强大特性来进行网格策略的编码网格策略秉持的原则是“仓位策略比择时策略更重要”。其基本操作方式就是以某点为基点,每上涨戓下跌一定点数挂一定数量空单戓多单,设定盈利目标,但不设止损,当价格朝期望方向进展时获利平仓,并在原点位挂同样的买单戓卖单。这样布下的这些交易单形成了一张像鱼网样的阵列,在震荡的市场中来回获利。

  本策略首先计算了过去300个价格数据的均值和标准差,并根据均值加减1和2个标准差得到网格的区间分界线,并分别配以0.3和0.5的仓位权重,然后根据价格所在的区间来配置仓位(+/-40为上下界,无实际意义):

  (-40,-3],(-3,-2],(-2,2],(2,3],(3,40](具体价格等于均值+数字倍标准差)-0.5,-0.3,0.0,0.3,0.5第一步,我们需要引入策略代码中需要用到的库

  import typesimport numpy as npimport pandas as pd复制第二步,我们需要在量化平台初始化合约数据,这个例子中,我们还是使用螺纹钢期货为例子。

  def init():

  #订阅螺纹钢的2005合约,并且取得量化平台当前周期的所有收盘价exchange.SetContractType("rb2005")records=exchange.GetRecords()close_01=records.Close

  #获取网格区间分界线context.band=np.mean(close_01)+np.array([-40,-3,-2,2,3,40])*np.std(close_01)#设置网格的仓位context.weight=[0.5,0.3,0.0,0.3,0.5]

  复制代码

  复制第三步,也是最重要的,我们开始编写策略逻辑和实现自动化交易

  这里需要注意的是,我们需要用到量化平台的国内商品期货模版,各位在量化策略编写页面进行编码时,需要把模版先复制到自己的策略库,然后在回测时勾选上,这里请各位读者注意

  策略逻辑与实现其自动化交易:

  def onTick(context,bars):

  obj=ext.NewPositionManager()#使用量化交易类库

  #此处用来获取持仓信息positions=exchange.GetPosition()#获取持仓数组if len(positions)==0:#如果持仓数组的长度是0 return 0#证明是空仓,返回0for i in range(len(positions)):#遍历持仓数组if(positions['Type']==PD_LONG)or(positions['Type']==PD_LONG_YD):position_long=1#将position_long标记为1

  elif(positions['Type']==PD_SHORT)or(positions['Type']==PD_SHORT_YD):position_short=-1#将position_short标记为-1

  bar=bars[0]#根据价格落在(-40,-3],(-3,-2],(-2,2],(2,3],(3,40]的区间范围来获取最新收盘价所在的价格区间grid=pd.cut([close_01],context.band,labels=[0,1,2,3,4])[0]

  #若无仓位且价格突破则按照设置好的区间开仓if not position_long and not position_short and grid!=2:#大于3为在中间网格的上方,做多if grid>=3:obj.OpenLong("rb2005",1)#以市价单开多仓到仓位if grid<=1:obj.OpenShort("rb2005",1)#以市价单开空仓到仓位

  #持有多仓的处理elif position_long:if grid>=3:obj.OpenLong("rb2005",1)#以市价单调多仓到仓位#等于2为在中间网格,平仓elif grid==2:obj.closebuy("rb2005",1)#以市价单全平多仓

  #小于1为在中间网格的下方,做空elif grid<=1:obj.closebuy("rb2005",1)#以市价单全平多仓obj.OpenShort("rb2005",1)#以市价单开空仓到仓位

  #持有空仓的处理elif position_short:#小于1为在中间网格的下方,做空if grid<=1:obj.OpenShort("rb2005",1)#以市价单调空仓到仓位#等于2为在中间网格,平仓elif grid==2:obj.closesell("rb2005",1)#以市价单全平空仓

  #大于3为在中间网格的上方,做多elif grid>=3:obj.closesell("rb2005",

相关文章
|
2天前
|
弹性计算 运维 搜索推荐
三翼鸟携手阿里云ECS g9i:智慧家庭场景的效能革命与未来生活新范式
三翼鸟是海尔智家旗下全球首个智慧家庭场景品牌,致力于提供覆盖衣、食、住、娱的一站式全场景解决方案。截至2025年,服务近1亿家庭,连接设备超5000万台。面对高并发、低延迟与稳定性挑战,全面升级为阿里云ECS g9i实例,实现连接能力提升40%、故障率下降90%、响应速度提升至120ms以内,成本降低20%,推动智慧家庭体验全面跃迁。
|
3天前
|
数据采集 人工智能 自然语言处理
3分钟采集134篇AI文章!深度解析如何通过云无影AgentBay实现25倍并发 + LlamaIndex智能推荐
结合阿里云无影 AgentBay 云端并发采集与 LlamaIndex 智能分析,3分钟高效抓取134篇 AI Agent 文章,实现 AI 推荐、智能问答与知识沉淀,打造从数据获取到价值提炼的完整闭环。
349 91
|
10天前
|
人工智能 自然语言处理 前端开发
Qoder全栈开发实战指南:开启AI驱动的下一代编程范式
Qoder是阿里巴巴于2025年发布的AI编程平台,首创“智能代理式编程”,支持自然语言驱动的全栈开发。通过仓库级理解、多智能体协同与云端沙箱执行,实现从需求到上线的端到端自动化,大幅提升研发效率,重塑程序员角色,引领AI原生开发新范式。
838 156
|
3天前
|
数据采集 缓存 数据可视化
Android 无侵入式数据采集:从手动埋点到字节码插桩的演进之路
本文深入探讨Android无侵入式埋点技术,通过AOP与字节码插桩(如ASM)实现数据采集自动化,彻底解耦业务代码与埋点逻辑。涵盖页面浏览、点击事件自动追踪及注解驱动的半自动化方案,提升数据质量与研发效率,助力团队迈向高效、稳定的智能化埋点体系。(238字)
255 156
|
4天前
|
域名解析 人工智能
【实操攻略】手把手教学,免费领取.CN域名
即日起至2025年12月31日,购买万小智AI建站或云·企业官网,每单可免费领1个.CN域名首年!跟我了解领取攻略吧~
|
11天前
|
机器人 API 调度
基于 DMS Dify+Notebook+Airflow 实现 Agent 的一站式开发
本文提出“DMS Dify + Notebook + Airflow”三位一体架构,解决 Dify 在代码执行与定时调度上的局限。通过 Notebook 扩展 Python 环境,Airflow实现任务调度,构建可扩展、可运维的企业级智能 Agent 系统,提升大模型应用的工程化能力。
|
人工智能 前端开发 API
前端接入通义千问(Qwen)API:5 分钟实现你的 AI 问答助手
本文介绍如何在5分钟内通过前端接入通义千问(Qwen)API,快速打造一个AI问答助手。涵盖API配置、界面设计、流式响应、历史管理、错误重试等核心功能,并提供安全与性能优化建议,助你轻松集成智能对话能力到前端应用中。
810 154