9 树(应用)
9.1 赫夫曼树
基本介绍:
- 给定 n 个权值作为 n 个叶子结点,构造一棵二叉树,若该树的带权路径长度(wpl)达到最小,称这样的二叉树为最优二叉树,也称为哈夫曼树(Huffman Tree), 还有的书翻译为霍夫曼树。
- 赫夫曼树是带权路径长度最短的树,权值较大的结点离根较近
构成步骤:
- 从小到大进行排序, 将每一个数据,每个数据都是一个节点 , 每个节点可以看成是一颗最简单的二叉树
- 取出根节点权值最小的两颗二叉树
- 组成一颗新的二叉树, 该新的二叉树的根节点的权值是前面两颗二叉树根节点权值的和
- 再将这颗新的二叉树,以根节点的权值大小 再次排序, 不断重复 1-2-3-4 的步骤,直到数列中,所有的数据都被处理,就得到一颗赫夫曼树
public class HuffmanTree { public static void main(String[] args) { int arr[] = {13, 7, 8, 3, 29, 6, 1}; Node root = createHuffmanTree(arr); //测试一把 preOrder(root); // } //编写一个前序遍历的方法 public static void preOrder(Node root) { if (root != null) { root.preOrder(); } else { System.out.println("是空树,不能遍历~~"); } } // 创建赫夫曼树的方法 /** * @param arr 需要创建成哈夫曼树的数组 * @return 创建好后的赫夫曼树的root结点 */ public static Node createHuffmanTree(int[] arr) { // 第一步为了操作方便 // 1. 遍历 arr 数组 // 2. 将arr的每个元素构成成一个Node // 3. 将Node 放入到ArrayList中 List<Node> nodes = new ArrayList<Node>(); for (int value : arr) { nodes.add(new Node(value)); } //我们处理的过程是一个循环的过程 while (nodes.size() > 1) { //排序 从小到大 Collections.sort(nodes); System.out.println("nodes =" + nodes); //取出根节点权值最小的两颗二叉树 //(1) 取出权值最小的结点(二叉树) Node leftNode = nodes.get(0); //(2) 取出权值第二小的结点(二叉树) Node rightNode = nodes.get(1); //(3)构建一颗新的二叉树 Node parent = new Node(leftNode.value + rightNode.value); parent.left = leftNode; parent.right = rightNode; //(4)从ArrayList删除处理过的二叉树 nodes.remove(leftNode); nodes.remove(rightNode); //(5)将parent加入到nodes nodes.add(parent); } //返回哈夫曼树的root结点 return nodes.get(0); } } // 创建结点类 // 为了让Node 对象持续排序Collections集合排序 // 让Node 实现Comparable接口 class Node implements Comparable<Node> { int value; // 结点权值 char c; //字符 Node left; // 指向左子结点 Node right; // 指向右子结点 //写一个前序遍历 public void preOrder() { System.out.println(this); if (this.left != null) { this.left.preOrder(); } if (this.right != null) { this.right.preOrder(); } } public Node(int value) { this.value = value; } @Override public String toString() { return "Node [value=" + value + "]"; } @Override public int compareTo(Node o) { // TODO Auto-generated method stub // 表示从小到大排序 return this.value - o.value; } }
9.2 赫夫曼编码
基本介绍:
步骤:
- 从小到大进行排序, 将每一个数据,每个数据都是一个节点 , 每个节点可以看成是一颗最简单的二叉树
- 取出根节点权值最小的两颗二叉树
- 组成一颗新的二叉树, 该新的二叉树的根节点的权值是前面两颗二叉树根节点权值的和
- 再将这颗新的二叉树,以根节点的权值大小 再次排序, 不断重复 1-2-3-4 的步骤,直到数列中,所有的数据都被处理,就得到一颗赫夫曼树
public class HuffmanCode { public static void main(String[] args) { //测试压缩文件 // String srcFile = "d://Uninstall.xml"; // String dstFile = "d://Uninstall.zip"; // // zipFile(srcFile, dstFile); // System.out.println("压缩文件ok~~"); //测试解压文件 String zipFile = "d://Uninstall.zip"; String dstFile = "d://Uninstall2.xml"; unZipFile(zipFile, dstFile); System.out.println("解压成功!"); /* String content = "i like like like java do you like a java"; byte[] contentBytes = content.getBytes(); System.out.println(contentBytes.length); //40 byte[] huffmanCodesBytes= huffmanZip(contentBytes); System.out.println("压缩后的结果是:" + Arrays.toString(huffmanCodesBytes) + " 长度= " + huffmanCodesBytes.length); //测试一把byteToBitString方法 //System.out.println(byteToBitString((byte)1)); byte[] sourceBytes = decode(huffmanCodes, huffmanCodesBytes); System.out.println("原来的字符串=" + new String(sourceBytes)); // "i like like like java do you like a java" */ //如何将 数据进行解压(解码) //分步过程 /* List<Node> nodes = getNodes(contentBytes); System.out.println("nodes=" + nodes); //测试一把,创建的赫夫曼树 System.out.println("赫夫曼树"); Node huffmanTreeRoot = createHuffmanTree(nodes); System.out.println("前序遍历"); huffmanTreeRoot.preOrder(); //测试一把是否生成了对应的赫夫曼编码 Map<Byte, String> huffmanCodes = getCodes(huffmanTreeRoot); System.out.println("~生成的赫夫曼编码表= " + huffmanCodes); //测试 byte[] huffmanCodeBytes = zip(contentBytes, huffmanCodes); System.out.println("huffmanCodeBytes=" + Arrays.toString(huffmanCodeBytes));//17 //发送huffmanCodeBytes 数组 */ } //编写一个方法,完成对压缩文件的解压 /** * * @param zipFile 准备解压的文件 * @param dstFile 将文件解压到哪个路径 */ public static void unZipFile(String zipFile, String dstFile) { //定义文件输入流 InputStream is = null; //定义一个对象输入流 ObjectInputStream ois = null; //定义文件的输出流 OutputStream os = null; try { //创建文件输入流 is = new FileInputStream(zipFile); //创建一个和 is关联的对象输入流 ois = new ObjectInputStream(is); //读取byte数组 huffmanBytes byte[] huffmanBytes = (byte[])ois.readObject(); //读取赫夫曼编码表 Map<Byte,String> huffmanCodes = (Map<Byte,String>)ois.readObject(); //解码 byte[] bytes = decode(huffmanCodes, huffmanBytes); //将bytes 数组写入到目标文件 os = new FileOutputStream(dstFile); //写数据到 dstFile 文件 os.write(bytes); } catch (Exception e) { // TODO: handle exception System.out.println(e.getMessage()); } finally { try { os.close(); ois.close(); is.close(); } catch (Exception e2) { // TODO: handle exception System.out.println(e2.getMessage()); } } } //编写方法,将一个文件进行压缩 /** * * @param srcFile 你传入的希望压缩的文件的全路径 * @param dstFile 我们压缩后将压缩文件放到哪个目录 */ public static void zipFile(String srcFile, String dstFile) { //创建输出流 OutputStream os = null; ObjectOutputStream oos = null; //创建文件的输入流 FileInputStream is = null; try { //创建文件的输入流 is = new FileInputStream(srcFile); //创建一个和源文件大小一样的byte[] byte[] b = new byte[is.available()]; //读取文件 is.read(b); //直接对源文件压缩 byte[] huffmanBytes = huffmanZip(b); //创建文件的输出流, 存放压缩文件 os = new FileOutputStream(dstFile); //创建一个和文件输出流关联的ObjectOutputStream oos = new ObjectOutputStream(os); //把 赫夫曼编码后的字节数组写入压缩文件 oos.writeObject(huffmanBytes); //我们是把 //这里我们以对象流的方式写入 赫夫曼编码,是为了以后我们恢复源文件时使用 //注意一定要把赫夫曼编码 写入压缩文件 oos.writeObject(huffmanCodes); }catch (Exception e) { // TODO: handle exception System.out.println(e.getMessage()); }finally { try { is.close(); oos.close(); os.close(); }catch (Exception e) { // TODO: handle exception System.out.println(e.getMessage()); } } } //完成数据的解压 //思路 //1. 将huffmanCodeBytes [-88, -65, -56, -65, -56, -65, -55, 77, -57, 6, -24, -14, -117, -4, -60, -90, 28] // 重写先转成 赫夫曼编码对应的二进制的字符串 "1010100010111..." //2. 赫夫曼编码对应的二进制的字符串 "1010100010111..." =》 对照 赫夫曼编码 =》 "i like like like java do you like a java" //编写一个方法,完成对压缩数据的解码 /** * * @param huffmanCodes 赫夫曼编码表 map * @param huffmanBytes 赫夫曼编码得到的字节数组 * @return 就是原来的字符串对应的数组 */ private static byte[] decode(Map<Byte,String> huffmanCodes, byte[] huffmanBytes) { //1. 先得到 huffmanBytes 对应的 二进制的字符串 , 形式 1010100010111... StringBuilder stringBuilder = new StringBuilder(); //将byte数组转成二进制的字符串 for(int i = 0; i < huffmanBytes.length; i++) { byte b = huffmanBytes[i]; //判断是不是最后一个字节 boolean flag = (i == huffmanBytes.length - 1); stringBuilder.append(byteToBitString(!flag, b)); } //把字符串安装指定的赫夫曼编码进行解码 //把赫夫曼编码表进行调换,因为反向查询 a->100 100->a Map<String, Byte> map = new HashMap<String,Byte>(); for(Map.Entry<Byte, String> entry: huffmanCodes.entrySet()) { map.put(entry.getValue(), entry.getKey()); } //创建要给集合,存放byte List<Byte> list = new ArrayList<>(); //i 可以理解成就是索引,扫描 stringBuilder for(int i = 0; i < stringBuilder.length(); ) { int count = 1; // 小的计数器 boolean flag = true; Byte b = null; while(flag) { //1010100010111... //递增的取出 key 1 String key = stringBuilder.substring(i, i+count);//i 不动,让count移动,指定匹配到一个字符 b = map.get(key); if(b == null) {//说明没有匹配到 count++; }else { //匹配到 flag = false; } } list.add(b); i += count;//i 直接移动到 count } //当for循环结束后,我们list中就存放了所有的字符 "i like like like java do you like a java" //把list 中的数据放入到byte[] 并返回 byte b[] = new byte[list.size()]; for(int i = 0;i < b.length; i++) { b[i] = list.get(i); } return b; } /** * 将一个byte 转成一个二进制的字符串, 如果看不懂,可以参考我讲的Java基础 二进制的原码,反码,补码 * @param b 传入的 byte * @param flag 标志是否需要补高位如果是true ,表示需要补高位,如果是false表示不补, 如果是最后一个字节,无需补高位 * @return 是该b 对应的二进制的字符串,(注意是按补码返回) */ private static String byteToBitString(boolean flag, byte b) { //使用变量保存 b int temp = b; //将 b 转成 int //如果是正数我们还存在补高位 if(flag) { temp |= 256; //按位与 256 1 0000 0000 | 0000 0001 => 1 0000 0001 } String str = Integer.toBinaryString(temp); //返回的是temp对应的二进制的补码 if(flag) { return str.substring(str.length() - 8); } else { return str; } } //使用一个方法,将前面的方法封装起来,便于我们的调用. /** * * @param bytes 原始的字符串对应的字节数组 * @return 是经过 赫夫曼编码处理后的字节数组(压缩后的数组) */ private static byte[] huffmanZip(byte[] bytes) { List<Node> nodes = getNodes(bytes); //根据 nodes 创建的赫夫曼树 Node huffmanTreeRoot = createHuffmanTree(nodes); //对应的赫夫曼编码(根据 赫夫曼树) Map<Byte, String> huffmanCodes = getCodes(huffmanTreeRoot); //根据生成的赫夫曼编码,压缩得到压缩后的赫夫曼编码字节数组 byte[] huffmanCodeBytes = zip(bytes, huffmanCodes); return huffmanCodeBytes; } //编写一个方法,将字符串对应的byte[] 数组,通过生成的赫夫曼编码表,返回一个赫夫曼编码 压缩后的byte[] /** * * @param bytes 这时原始的字符串对应的 byte[] * @param huffmanCodes 生成的赫夫曼编码map * @return 返回赫夫曼编码处理后的 byte[] * 举例: String content = "i like like like java do you like a java"; =》 byte[] contentBytes = content.getBytes(); * 返回的是 字符串 "1010100010111111110010001011111111001000101111111100100101001101110001110000011011101000111100101000101111111100110001001010011011100" * => 对应的 byte[] huffmanCodeBytes ,即 8位对应一个 byte,放入到 huffmanCodeBytes * huffmanCodeBytes[0] = 10101000(补码) => byte [推导 10101000=> 10101000 - 1 => 10100111(反码)=> 11011000= -88 ] * huffmanCodeBytes[1] = -88 */ private static byte[] zip(byte[] bytes, Map<Byte, String> huffmanCodes) { //1.利用 huffmanCodes 将 bytes 转成 赫夫曼编码对应的字符串 StringBuilder stringBuilder = new StringBuilder(); //遍历bytes 数组 for(byte b: bytes) { stringBuilder.append(huffmanCodes.get(b)); } //System.out.println("测试 stringBuilder~~~=" + stringBuilder.toString()); //将 "1010100010111111110..." 转成 byte[] //统计返回 byte[] huffmanCodeBytes 长度 //一句话 int len = (stringBuilder.length() + 7) / 8; int len; if(stringBuilder.length() % 8 == 0) { len = stringBuilder.length() / 8; } else { len = stringBuilder.length() / 8 + 1; } //创建 存储压缩后的 byte数组 byte[] huffmanCodeBytes = new byte[len]; int index = 0;//记录是第几个byte for (int i = 0; i < stringBuilder.length(); i += 8) { //因为是每8位对应一个byte,所以步长 +8 String strByte; if(i+8 > stringBuilder.length()) {//不够8位 strByte = stringBuilder.substring(i); }else{ strByte = stringBuilder.substring(i, i + 8); } //将strByte 转成一个byte,放入到 huffmanCodeBytes huffmanCodeBytes[index] = (byte)Integer.parseInt(strByte, 2); index++; } return huffmanCodeBytes; } //生成赫夫曼树对应的赫夫曼编码 //思路: //1. 将赫夫曼编码表存放在 Map<Byte,String> 形式 // 生成的赫夫曼编码表{32=01, 97=100, 100=11000, 117=11001, 101=1110, 118=11011, 105=101, 121=11010, 106=0010, 107=1111, 108=000, 111=0011} static Map<Byte, String> huffmanCodes = new HashMap<Byte,String>(); //2. 在生成赫夫曼编码表示,需要去拼接路径, 定义一个StringBuilder 存储某个叶子结点的路径 static StringBuilder stringBuilder = new StringBuilder(); //为了调用方便,我们重载 getCodes private static Map<Byte, String> getCodes(Node root) { if(root == null) { return null; } //处理root的左子树 getCodes(root.left, "0", stringBuilder); //处理root的右子树 getCodes(root.right, "1", stringBuilder); return huffmanCodes; } /** * 功能:将传入的node结点的所有叶子结点的赫夫曼编码得到,并放入到huffmanCodes集合 * @param node 传入结点 * @param code 路径: 左子结点是 0, 右子结点 1 * @param stringBuilder 用于拼接路径 */ private static void getCodes(Node node, String code, StringBuilder stringBuilder) { StringBuilder stringBuilder2 = new StringBuilder(stringBuilder); //将code 加入到 stringBuilder2 stringBuilder2.append(code); if(node != null) { //如果node == null不处理 //判断当前node 是叶子结点还是非叶子结点 if(node.data == null) { //非叶子结点 //递归处理 //向左递归 getCodes(node.left, "0", stringBuilder2); //向右递归 getCodes(node.right, "1", stringBuilder2); } else { //说明是一个叶子结点 //就表示找到某个叶子结点的最后 huffmanCodes.put(node.data, stringBuilder2.toString()); } } } //前序遍历的方法 private static void preOrder(Node root) { if(root != null) { root.preOrder(); }else { System.out.println("赫夫曼树为空"); } } /** * * @param bytes 接收字节数组 * @return 返回的就是 List 形式 [Node[date=97 ,weight = 5], Node[]date=32,weight = 9]......], */ private static List<Node> getNodes(byte[] bytes) { //1创建一个ArrayList ArrayList<Node> nodes = new ArrayList<Node>(); //遍历 bytes , 统计 每一个byte出现的次数->map[key,value] Map<Byte, Integer> counts = new HashMap<>(); for (byte b : bytes) { Integer count = counts.get(b); if (count == null) { // Map还没有这个字符数据,第一次 counts.put(b, 1); } else { counts.put(b, count + 1); } } //把每一个键值对转成一个Node 对象,并加入到nodes集合 //遍历map for(Map.Entry<Byte, Integer> entry: counts.entrySet()) { nodes.add(new Node(entry.getKey(), entry.getValue())); } return nodes; } //可以通过List 创建对应的赫夫曼树 private static Node createHuffmanTree(List<Node> nodes) { while(nodes.size() > 1) { //排序, 从小到大 Collections.sort(nodes); //取出第一颗最小的二叉树 Node leftNode = nodes.get(0); //取出第二颗最小的二叉树 Node rightNode = nodes.get(1); //创建一颗新的二叉树,它的根节点 没有data, 只有权值 Node parent = new Node(null, leftNode.weight + rightNode.weight); parent.left = leftNode; parent.right = rightNode; //将已经处理的两颗二叉树从nodes删除 nodes.remove(leftNode); nodes.remove(rightNode); //将新的二叉树,加入到nodes nodes.add(parent); } //nodes 最后的结点,就是赫夫曼树的根结点 return nodes.get(0); } } //创建Node ,待数据和权值 class Node implements Comparable<Node> { Byte data; // 存放数据(字符)本身,比如'a' => 97 ' ' => 32 int weight; //权值, 表示字符出现的次数 Node left;// Node right; public Node(Byte data, int weight) { this.data = data; this.weight = weight; } @Override public int compareTo(Node o) { // 从小到大排序 return this.weight - o.weight; } public String toString() { return "Node [data = " + data + " weight=" + weight + "]"; } //前序遍历 public void preOrder() { System.out.println(this); if(this.left != null) { this.left.preOrder(); } if(this.right != null) { this.right.preOrder(); } } }
9.3 平衡二叉树
基本介绍:
- 平衡二叉树也叫平衡二叉搜索树(Self-balancing binary search tree)又被称为 AVL 树,可以保证查询效率较高
- 具有以下特点:它是一 棵空树或它的左右两个子树的高度差的绝对值不超过 1,并且左右两个子树都是一棵平衡二叉树。平衡二叉树的常用实现方法有红黑树、AVL、替罪羊树、Treap、伸展树等
代码实现:
public class AVLTreeDemo { public static void main(String[] args) { //int[] arr = {4,3,6,5,7,8}; //int[] arr = { 10, 12, 8, 9, 7, 6 }; int[] arr = { 10, 11, 7, 6, 8, 9 }; //创建一个 AVLTree对象 AVLTree avlTree = new AVLTree(); //添加结点 for(int i=0; i < arr.length; i++) { avlTree.add(new Node(arr[i])); } //遍历 System.out.println("中序遍历"); avlTree.infixOrder(); System.out.println("在平衡处理~~"); System.out.println("树的高度=" + avlTree.getRoot().height()); //3 System.out.println("树的左子树高度=" + avlTree.getRoot().leftHeight()); // 2 System.out.println("树的右子树高度=" + avlTree.getRoot().rightHeight()); // 2 System.out.println("当前的根结点=" + avlTree.getRoot());//8 } } // 创建AVLTree class AVLTree { private Node root; public Node getRoot() { return root; } // 查找要删除的结点 public Node search(int value) { if (root == null) { return null; } else { return root.search(value); } } // 查找父结点 public Node searchParent(int value) { if (root == null) { return null; } else { return root.searchParent(value); } } // 编写方法: // 1. 返回的 以node 为根结点的二叉排序树的最小结点的值 // 2. 删除node 为根结点的二叉排序树的最小结点 /** * * @param node * 传入的结点(当做二叉排序树的根结点) * @return 返回的 以node 为根结点的二叉排序树的最小结点的值 */ public int delRightTreeMin(Node node) { Node target = node; // 循环的查找左子节点,就会找到最小值 while (target.left != null) { target = target.left; } // 这时 target就指向了最小结点 // 删除最小结点 delNode(target.value); return target.value; } // 删除结点 public void delNode(int value) { if (root == null) { return; } else { // 1.需求先去找到要删除的结点 targetNode Node targetNode = search(value); // 如果没有找到要删除的结点 if (targetNode == null) { return; } // 如果我们发现当前这颗二叉排序树只有一个结点 if (root.left == null && root.right == null) { root = null; return; } // 去找到targetNode的父结点 Node parent = searchParent(value); // 如果要删除的结点是叶子结点 if (targetNode.left == null && targetNode.right == null) { // 判断targetNode 是父结点的左子结点,还是右子结点 if (parent.left != null && parent.left.value == value) { // 是左子结点 parent.left = null; } else if (parent.right != null && parent.right.value == value) {// 是由子结点 parent.right = null; } } else if (targetNode.left != null && targetNode.right != null) { // 删除有两颗子树的节点 int minVal = delRightTreeMin(targetNode.right); targetNode.value = minVal; } else { // 删除只有一颗子树的结点 // 如果要删除的结点有左子结点 if (targetNode.left != null) { if (parent != null) { // 如果 targetNode 是 parent 的左子结点 if (parent.left.value == value) { parent.left = targetNode.left; } else { // targetNode 是 parent 的右子结点 parent.right = targetNode.left; } } else { root = targetNode.left; } } else { // 如果要删除的结点有右子结点 if (parent != null) { // 如果 targetNode 是 parent 的左子结点 if (parent.left.value == value) { parent.left = targetNode.right; } else { // 如果 targetNode 是 parent 的右子结点 parent.right = targetNode.right; } } else { root = targetNode.right; } } } } } // 添加结点的方法 public void add(Node node) { if (root == null) { root = node;// 如果root为空则直接让root指向node } else { root.add(node); } } // 中序遍历 public void infixOrder() { if (root != null) { root.infixOrder(); } else { System.out.println("二叉排序树为空,不能遍历"); } } } // 创建Node结点 class Node { int value; Node left; Node right; public Node(int value) { this.value = value; } // 返回左子树的高度 public int leftHeight() { if (left == null) { return 0; } return left.height(); } // 返回右子树的高度 public int rightHeight() { if (right == null) { return 0; } return right.height(); } // 返回 以该结点为根结点的树的高度 public int height() { return Math.max(left == null ? 0 : left.height(), right == null ? 0 : right.height()) + 1; } //左旋转方法 private void leftRotate() { //创建新的结点,以当前根结点的值 Node newNode = new Node(value); //把新的结点的左子树设置成当前结点的左子树 newNode.left = left; //把新的结点的右子树设置成带你过去结点的右子树的左子树 newNode.right = right.left; //把当前结点的值替换成右子结点的值 value = right.value; //把当前结点的右子树设置成当前结点右子树的右子树 right = right.right; //把当前结点的左子树(左子结点)设置成新的结点 left = newNode; } //右旋转 private void rightRotate() { Node newNode = new Node(value); newNode.right = right; newNode.left = left.right; value = left.value; left = left.left; right = newNode; } // 查找要删除的结点 /** * * @param value * 希望删除的结点的值 * @return 如果找到返回该结点,否则返回null */ public Node search(int value) { if (value == this.value) { // 找到就是该结点 return this; } else if (value < this.value) {// 如果查找的值小于当前结点,向左子树递归查找 // 如果左子结点为空 if (this.left == null) { return null; } return this.left.search(value); } else { // 如果查找的值不小于当前结点,向右子树递归查找 if (this.right == null) { return null; } return this.right.search(value); } } // 查找要删除结点的父结点 /** * * @param value * 要找到的结点的值 * @return 返回的是要删除的结点的父结点,如果没有就返回null */ public Node searchParent(int value) { // 如果当前结点就是要删除的结点的父结点,就返回 if ((this.left != null && this.left.value == value) || (this.right != null && this.right.value == value)) { return this; } else { // 如果查找的值小于当前结点的值, 并且当前结点的左子结点不为空 if (value < this.value && this.left != null) { return this.left.searchParent(value); // 向左子树递归查找 } else if (value >= this.value && this.right != null) { return this.right.searchParent(value); // 向右子树递归查找 } else { return null; // 没有找到父结点 } } } @Override public String toString() { return "Node [value=" + value + "]"; } // 添加结点的方法 // 递归的形式添加结点,注意需要满足二叉排序树的要求 public void add(Node node) { if (node == null) { return; } // 判断传入的结点的值,和当前子树的根结点的值关系 if (node.value < this.value) { // 如果当前结点左子结点为null if (this.left == null) { this.left = node; } else { // 递归的向左子树添加 this.left.add(node); } } else { // 添加的结点的值大于 当前结点的值 if (this.right == null) { this.right = node; } else { // 递归的向右子树添加 this.right.add(node); } } //当添加完一个结点后,如果: (右子树的高度-左子树的高度) > 1 , 左旋转 if(rightHeight() - leftHeight() > 1) { //如果它的右子树的左子树的高度大于它的右子树的右子树的高度 if(right != null && right.leftHeight() > right.rightHeight()) { //先对右子结点进行右旋转 right.rightRotate(); //然后在对当前结点进行左旋转 leftRotate(); //左旋转.. } else { //直接进行左旋转即可 leftRotate(); } return ; //必须要!!! } //当添加完一个结点后,如果 (左子树的高度 - 右子树的高度) > 1, 右旋转 if(leftHeight() - rightHeight() > 1) { //如果它的左子树的右子树高度大于它的左子树的高度 if(left != null && left.rightHeight() > left.leftHeight()) { //先对当前结点的左结点(左子树)->左旋转 left.leftRotate(); //再对当前结点进行右旋转 rightRotate(); } else { //直接进行右旋转即可 rightRotate(); } } } // 中序遍历 public void infixOrder() { if (this.left != null) { this.left.infixOrder(); } System.out.println(this); if (this.right != null) { this.right.infixOrder(); } } }
9.4 多路查找树
B树:
- B 树通过重新组织节点, 降低了树的高度
- 文件系统及数据库系统的设计者利用了磁盘预读原理,将一个节点的大小设为等于一个页(页得大小通常为4k),这样每个节点只需要一次 I/O 就可以完全载入
- 将树的度 M 设置为 1024,在 600 亿个元素中最多只需要 4 次 I/O 操作就可以读取到想要的元素, B树(B+)广泛应用于文件存储系统以及数据库系统中
2-3树:
- 2-3 树的所有叶子节点都在同一层.(只要是 B 树都满足这个条件)
- 有两个子节点的节点叫二节点,二节点要么没有子节点,要么有两个子节点
- 有三个子节点的节点叫三节点,三节点要么没有子节点,要么有三个子节点
- 2-3 树是由二节点和三节点构成的树
2-3树插入规则:
- 2-3 树的所有叶子节点都在同一层.(只要是 B 树都满足这个条件)
- 有两个子节点的节点叫二节点,二节点要么没有子节点,要么有两个子节点. 3) 有三个子节点的节点叫三节点,三节点要么没有子节点,要么有三个子节点
- 当按照规则插入一个数到某个节点时,不能满足上面三个要求,就需要拆,先向上拆,如果上层满,则拆本层,拆后仍然需要满足上面 3 个条件
- 对于三节点的子树的值大小仍然遵守(BST二叉树排序)规则
B树特点:
- B 树的阶:节点的最多子节点个数
- B-树的搜索,从根结点开始,对结点内的关键字(有序)序列进行二分查找,如果命中则结束,否则进入查询关键字所属范围的儿子结点;重复,直到所对应的儿子指针为空,或已经是叶子结点
- 关键字集合分布在整颗树中, 即叶子节点和非叶子节点都存放数据
- 搜索有可能在非叶子结点结束
- 其搜索性能等价于在关键字全集内做一次二分查找
B+树:
- B+树的搜索与 B 树也基本相同,区别是 B+树只有达到叶子结点才命中(B 树可以在非叶子结点命中),其性能也等价于在关键字全集做一次二分查找
- 所有关键字都出现在叶子结点的链表中(即数据只能在叶子节点【也叫稠密索引】),且链表中的关键字(数据)恰好是有序的
- 不可能在非叶子结点命中
- 非叶子结点相当于是叶子结点的索引(稀疏索引),叶子结点相当于是存储(关键字)数据的数据层
B*树:
- B树定义了非叶子结点关键字个数至少为(2/3)M,即块的最低使用率为 2/3,而B+树的块的最低使用率为的1/2
- 从第 1 个特点我们可以看出,B*树分配新结点的概率比 B+
10 图
邻接矩阵:
邻接表:
public class Graph { private ArrayList<String> vertexList; //存储顶点集合 private int[][] edges; //存储图对应的邻结矩阵 private int numOfEdges; //表示边的数目 //定义给数组boolean[], 记录某个结点是否被访问 private boolean[] isVisited; public static void main(String[] args) { //测试一把图是否创建ok int n = 8; //结点的个数 //String Vertexs[] = {"A", "B", "C", "D", "E"}; String Vertexs[] = {"1", "2", "3", "4", "5", "6", "7", "8"}; //创建图对象 Graph graph = new Graph(n); //循环的添加顶点 for (String vertex : Vertexs) { graph.insertVertex(vertex); } //添加边 //A-B A-C B-C B-D B-E // graph.insertEdge(0, 1, 1); // A-B // graph.insertEdge(0, 2, 1); // // graph.insertEdge(1, 2, 1); // // graph.insertEdge(1, 3, 1); // // graph.insertEdge(1, 4, 1); // //更新边的关系 graph.insertEdge(0, 1, 1); graph.insertEdge(0, 2, 1); graph.insertEdge(1, 3, 1); graph.insertEdge(1, 4, 1); graph.insertEdge(3, 7, 1); graph.insertEdge(4, 7, 1); graph.insertEdge(2, 5, 1); graph.insertEdge(2, 6, 1); graph.insertEdge(5, 6, 1); //显示一把邻结矩阵 graph.showGraph(); //测试一把,我们的dfs遍历是否ok System.out.println("深度遍历"); graph.dfs(); // A->B->C->D->E [1->2->4->8->5->3->6->7] // System.out.println(); System.out.println("广度优先!"); graph.bfs(); // A->B->C->D-E [1->2->3->4->5->6->7->8] } //构造器 public Graph(int n) { //初始化矩阵和vertexList edges = new int[n][n]; vertexList = new ArrayList<String>(n); numOfEdges = 0; } //得到第一个邻接结点的下标 w /** * @param index * @return 如果存在就返回对应的下标,否则返回-1 */ public int getFirstNeighbor(int index) { for (int j = 0; j < vertexList.size(); j++) { if (edges[index][j] > 0) { return j; } } return -1; } //根据前一个邻接结点的下标来获取下一个邻接结点 public int getNextNeighbor(int v1, int v2) { for (int j = v2 + 1; j < vertexList.size(); j++) { if (edges[v1][j] > 0) { return j; } } return -1; } //深度优先遍历算法 //i 第一次就是 0 private void dfs(boolean[] isVisited, int i) { //首先我们访问该结点,输出 System.out.print(getValueByIndex(i) + "->"); //将结点设置为已经访问 isVisited[i] = true; //查找结点i的第一个邻接结点w int w = getFirstNeighbor(i); while (w != -1) {//说明有 if (!isVisited[w]) { dfs(isVisited, w); } //如果w结点已经被访问过 w = getNextNeighbor(i, w); } } //对dfs 进行一个重载, 遍历我们所有的结点,并进行 dfs public void dfs() { isVisited = new boolean[vertexList.size()]; //遍历所有的结点,进行dfs[回溯] for (int i = 0; i < getNumOfVertex(); i++) { if (!isVisited[i]) { dfs(isVisited, i); } } } //对一个结点进行广度优先遍历的方法 private void bfs(boolean[] isVisited, int i) { int u; // 表示队列的头结点对应下标 int w; // 邻接结点w //队列,记录结点访问的顺序 LinkedList queue = new LinkedList(); //访问结点,输出结点信息 System.out.print(getValueByIndex(i) + "=>"); //标记为已访问 isVisited[i] = true; //将结点加入队列 queue.addLast(i); while (!queue.isEmpty()) { //取出队列的头结点下标 u = (Integer) queue.removeFirst(); //得到第一个邻接结点的下标 w w = getFirstNeighbor(u); while (w != -1) {//找到 //是否访问过 if (!isVisited[w]) { System.out.print(getValueByIndex(w) + "=>"); //标记已经访问 isVisited[w] = true; //入队 queue.addLast(w); } //以u为前驱点,找w后面的下一个邻结点 w = getNextNeighbor(u, w); //体现出我们的广度优先 } } } //遍历所有的结点,都进行广度优先搜索 public void bfs() { isVisited = new boolean[vertexList.size()]; for (int i = 0; i < getNumOfVertex(); i++) { if (!isVisited[i]) { bfs(isVisited, i); } } } //图中常用的方法 //返回结点的个数 public int getNumOfVertex() { return vertexList.size(); } //显示图对应的矩阵 public void showGraph() { for (int[] link : edges) { System.err.println(Arrays.toString(link)); } } //得到边的数目 public int getNumOfEdges() { return numOfEdges; } //返回结点i(下标)对应的数据 0->"A" 1->"B" 2->"C" public String getValueByIndex(int i) { return vertexList.get(i); } //返回v1和v2的权值 public int getWeight(int v1, int v2) { return edges[v1][v2]; } //插入结点 public void insertVertex(String vertex) { vertexList.add(vertex); } //添加边 /** * @param v1 表示点的下标即使第几个顶点 "A"-"B" "A"->0 "B"->1 * @param v2 第二个顶点对应的下标 * @param weight 表示 */ public void insertEdge(int v1, int v2, int weight) { edges[v1][v2] = weight; edges[v2][v1] = weight; numOfEdges++; } }
10.1 深度优先
//深度优先遍历算法 //i 第一次就是 0 private void dfs(boolean[] isVisited, int i) { //首先我们访问该结点,输出 System.out.print(getValueByIndex(i) + "->"); //将结点设置为已经访问 isVisited[i] = true; //查找结点i的第一个邻接结点w int w = getFirstNeighbor(i); while (w != -1) {//说明有 if (!isVisited[w]) { dfs(isVisited, w); } //如果w结点已经被访问过 w = getNextNeighbor(i, w); } } //对dfs 进行一个重载, 遍历我们所有的结点,并进行 dfs public void dfs() { isVisited = new boolean[vertexList.size()]; //遍历所有的结点,进行dfs[回溯] for (int i = 0; i < getNumOfVertex(); i++) { if (!isVisited[i]) { dfs(isVisited, i); } } }
10.2 广度优先
//对一个结点进行广度优先遍历的方法 private void bfs(boolean[] isVisited, int i) { int u; // 表示队列的头结点对应下标 int w; // 邻接结点w //队列,记录结点访问的顺序 LinkedList queue = new LinkedList(); //访问结点,输出结点信息 System.out.print(getValueByIndex(i) + "=>"); //标记为已访问 isVisited[i] = true; //将结点加入队列 queue.addLast(i); while (!queue.isEmpty()) { //取出队列的头结点下标 u = (Integer) queue.removeFirst(); //得到第一个邻接结点的下标 w w = getFirstNeighbor(u); while (w != -1) {//找到 //是否访问过 if (!isVisited[w]) { System.out.print(getValueByIndex(w) + "=>"); //标记已经访问 isVisited[w] = true; //入队 queue.addLast(w); } //以u为前驱点,找w后面的下一个邻结点 w = getNextNeighbor(u, w); //体现出我们的广度优先 } } } //遍历所有的结点,都进行广度优先搜索 public void bfs() { isVisited = new boolean[vertexList.size()]; for (int i = 0; i < getNumOfVertex(); i++) { if (!isVisited[i]) { bfs(isVisited, i); } } }