linkkkkkk
题意:
给定长度为n nn的数组c cc,求m a x ( ( j − i ) ∗ ( c i + c j ) )
思路:
将式子转化为m a x ( ( j − i ) ∗ ( c j − ( − c i ) ) )
将( j , c j ) , ( i , − c i )分别看做是矩形的左下角和右上角的点,问题就转化成了求矩形的最大面积。
假设a = ( j , c j ) , b = ( i , − c i )。
可以看出b是有决策单调性的,固定a的话,肯定b越往右上越优;所以对于b来说,如果b [ u ] x . < b [ v ] . x , b [ u ] . y < = b [ v ] . y那么v是比u优的,可以直接忽略掉u。a也同理。
如果计算答案呢,假设a数组的长度为l a,b数组的长度为l b,此时的两个数组都先按x从小到大再按y从小到大排序了,即从左下到右上。用s o l v e ( l 1 , r 1 , l 2 , r 2 )表示a [ l 1 : r 1 ]和b [ l 2 : r 2 ]的最大值,考虑怎么实现比较优秀的递归。
设m i d = ( l 1 + r 1 ) / 2,遍历b [ l 2 , r 2 ]找到p o s使得a [ m i d ] − b [ p o s ]的面积最大,即p o s是相对于m i d的最优解。那么接下来应该递归s o l v e ( l 1 , m i d − 1 , l 2 , p o s )和s o l v e ( m i d + 1 , r 1 , p o s , r 2 )。
所以对于a中m i d左下的点来说,最优解只会在p o s以及p o s左边。
时间复杂度O ( n l o g n )
代码:
// Problem: L. Two Buildings // Contest: Codeforces - 2020-2021 ACM-ICPC, Asia Seoul Regional Contest // URL: https://codeforces.ml/gym/102920/problem/L // Memory Limit: 512 MB // Time Limit: 1000 ms // // Powered by CP Editor (https://cpeditor.org) #include<iostream> #include<cstdio> #include<string> #include<ctime> #include<cmath> #include<cstring> #include<algorithm> #include<stack> #include<climits> #include<queue> #include<map> #include<set> #include<sstream> #include<cassert> #include<bitset> #include<list> #include<unordered_map> //#include<bits/stdc++.h> using namespace std; typedef long long ll; typedef unsigned long long ull; typedef pair<ll, ll>PLL; typedef pair<int, int>PII; typedef pair<double, double>PDD; typedef pair<string,string>PSS; #define I_int ll inline ll read(){ll x = 0, f = 1;char ch = getchar();while(ch < '0' || ch > '9'){if(ch == '-')f = -1;ch = getchar();}while(ch >= '0' && ch <= '9'){x = x * 10 + ch - '0';ch = getchar();}return x * f;} inline void write(ll x){if (x < 0) x = ~x + 1, putchar('-');if (x > 9) write(x / 10);putchar(x % 10 + '0');} #define read read() #define closeSync ios::sync_with_stdio(0);cin.tie(0);cout.tie(0) #define multiCase int T;cin>>T;for(int t=1;t<=T;t++) #define rep(i,a,b) for(int i=(a);i<=(b);i++) #define repp(i,a,b) for(int i=(a);i<(b);i++) #define per(i,a,b) for(int i=(a);i>=(b);i--) #define perr(i,a,b) for(int i=(a);i>(b);i--) #define x first #define y second ll ksm(ll a, ll b,ll mod){ll res = 1;while(b){if(b&1)res=res*a%mod;a=a*a%mod;b>>=1;}return res;} const int maxn=5e6+100,inf=0x3f3f3f3f; ll ans,n,c[maxn]; struct node{ ll x,y; }a[maxn],b[maxn]; bool cmp(node a,node b){ if(a.x==b.x) return a.y<b.y; return a.x<b.x; } ll solve(int l1,int r1,int l2,int r2){ if(l1>r1||l2>r2) return 0; int mid=(l1+r1)/2; ll maxx=-1e18,pos=l2; for(int i=l2;i<=r2;i++){ if(a[mid].x>b[i].x&&a[mid].y>b[i].y) continue; ll tmp=(b[i].x-a[mid].x)*(b[i].y-a[mid].y); if(maxx<tmp) maxx=tmp,pos=i; } maxx=max(maxx,solve(l1,mid-1,l2,pos)); maxx=max(maxx,solve(mid+1,r1,pos,r2)); ans=max(ans,maxx); return maxx; } int main() { n=read; rep(i,1,n){ c[i]=read; a[i]={i,-c[i]};b[i]={i,c[i]}; } sort(a+1,a+1+n,cmp); sort(b+1,b+1+n,cmp); int pos=1,idx=0; unordered_map<int,int>mp; for(int i=2;i<=n;i++) if(a[i].y>=a[pos].y) mp[i]=1; else pos=i; for(int i=1;i<=n;i++) if(!mp[i]) a[++idx]=a[i]; int tot=0;mp.clear(); pos=n; for(int i=n-1;i;i--) if(b[i].y<=b[pos].y) mp[i]=1; else pos=i; for(int i=1;i<=n;i++) if(!mp[i]) b[++tot]=b[i]; solve(1,idx,1,tot); cout<<ans<<endl; return 0; }