【数据结构与算法分析】0基础带你学数据结构与算法分析08--二叉查找树 (BST)

简介: 假设树上每个结点都存储了一项数据,如果这些数据是杂乱无章的插入树中,那查找这些数据时并不容易,需要 O(N) 的时间复杂度来遍历每个结点搜索数据。

假设树上每个结点都存储了一项数据,如果这些数据是杂乱无章的插入树中,那查找这些数据时并不容易,需要 O(N) 的时间复杂度来遍历每个结点搜索数据。


如果想要时间复杂度降到 O(log⁡N) ,则需要在常数时间内,将问题的大小缩减。如果为一个结点加上限制,比如子树上的值总比当前结点的值大,而另一边总比当前结点的值小,如此便在常数时间内可以将问题的大小减半,可以判断接下来搜索左子树还是右子树。这种加以限制的二叉树被称为 二叉查找树 (Binary Search Tree, BST)。假定 BST 中左结点总是严格小于当前结点的值,而右结点总是不小于当前结点的值。

15.png

二叉树的遍历四种方法很简单,如果将其用于 BST 上有什么效果呢:


前序遍历: 6,2,1,4,3,8,7,9

中序遍历: 1,2,3,4,6,7,8,9

后序遍历: 1,3,4,2,7,9,8,6

层序遍历: 6,2,8,1,4,7,9,3


BST 中进行查找


对 BST 的查找操作中,以下三种操作是最为简单的。


判断元素是否存在,存在时将返回 true ,反之返回 false


template <class Element>
bool contains(BinaryTreeNode<Element>* root, const Element& target) {
  if (root == nullptr) {
    return false;
  }
  if (root->data == target) {
    return true;
  }
  return contains(root->data < target ? root->right : root->left, target);
}

查找最小值并返回其结点

template <class Element>
BinaryTreeNode<Element>* find_min(BinaryTreeNode<Element>* root) {
  if (root == nullptr) {
    return nullptr;
  }
  return root->left == nullptr ? root : find_min(root->left);
}

查找最大值并返回其结点


template <class Element>
BinaryTreeNode<Element>* find_max(BinaryTreeNode<Element>* root) {
  if (root != nullptr) {
    while (root->right != nullptr) {
      root = root->right;
    }
  }
  return root;
}

16.png

// 获取下界
template <class Element>
BinaryTreeNode* get_lower_bound(BinaryTreeNode* root, const Element& target) {
  auto result = root;
  while (root != nullptr) {
    if (!(root->data < target)) {
      result = root;
      root = root->left;
    } else {
      root = root->right;
    }
  }
  return result;
}
// 获取上界
template <class Element>
BinaryTreeNode* get_upper_bound(BinaryTreeNode* root, const Element& target) {
  auto result = root;
  while (root != nullptr) {
    if (target < root->data) {
      result = root;
      root = root->left;
    } else {
      root = root->right;
    }
  }
  return result;
}


BST 中进行插入与移除操作


插入一个元素在 BST 上的操作十分简单,与 contains 函数一样,以 BST 的定义顺着 BST 向下寻找,直到结点的子结点为 nullptr 为止,将这个插入的结点挂载到这个查找到的子结点上。

17.png


如果是移除操作呢?我们一直忽略了如何在二叉树中移除一个元素,因为正常的一棵二叉树中,如果你想移除一个结点,你需要处理移除结点之后 parent 与 child 之间的关系。这并不好处理,你不确定这些 child 是否可以挂载到 parent 上,继续以 parent 的子结点出现。幸运的是,你可以直接将其值与一个 leaf 交换,并直接删除 leaf 就好,这样你就没有 parent 的担忧了。


这种交换的方式可以用于 BST 吗?当然是完全可以。现在只剩下一个问题了,如何保证在移除结点后,这棵树依然是 BST,稍微转换一下问题的问法:和哪个 leaf 交换不会影响 BST 的结构。


当然是和其前驱或者后继交换后再删除不会影响 BST 的整体结构,如果前驱或后继并不是 leaf,那么递归地交换结点的值,直到结点是 leaf 为止。如果这个结点本身就是 leaf,那不用找了,决定就是你了!


可选择前驱还是后继呢,如果结点有右子树,则代表着其后继在右子树中;如果结点有左子树,则表达其前驱在左子树中。如果没有对应的子树,代表其前驱或者后继需要回到父结点寻找,为了不必要的复杂度,一般选择在其子树中寻找前驱 / 后继结点。如果你找到了一个结点的前驱 / 后继,如果它不是 leaf,那它一定没有后继 / 前驱所对应的子树,被迫你只能一直沿着向前或向后寻找 leaf。


18.png

BST 的平均情况分析


一棵树的所有结点的深度和称为 内部路径长 (internal path length),我们尝试计算 BST 平均路径长。令 D(N) 是具有 N 个结点的某棵树 T 的内部路径长,则有 D(1)=0。一棵 N 结点树是由一棵 i(0≤i<N) 结点左子树和一棵 N−i−1 结点右子树及深度为 0 的根组成的,则可以得到递推关系

19.png

得到平均值 D(N)=O(Nlog⁡N) ,因此结点的预期深度 O(log⁡N) ,但这不意味着所有操作的平均运行时间是 O(log⁡N) 。


Weiss 在书中为我们展示了一个随机生成的 500 个结点的 BST,其期望平均深度为 9.98。

20.png

如果交替插入和删除 Θ(N^2) 次,那么树的平均期望深度将是 Θ(N) 。而下图展示了在 25 万次插入移除随机值之后树的样子,结点的平均深度为 12.51 。其中有可能的一个原因是,在移除结点时 remove 总是倾向于移除结点的前驱,而保留了结点的后继。我们可以尝试随机移除结点前驱或后继的方法来缓解这种不平衡。还有一个原因是一个给定序列,由根 (给定序列的第一个元素) 的值决定这棵树的偏向,如果根元素过大则会导致左子树的结点更多,因为序列中大部位数都小于根,反之则导致右子树结点增多。

21.png

相关文章
|
2月前
|
算法 数据处理 C语言
C语言中的位运算技巧,涵盖基本概念、应用场景、实用技巧及示例代码,并讨论了位运算的性能优势及其与其他数据结构和算法的结合
本文深入解析了C语言中的位运算技巧,涵盖基本概念、应用场景、实用技巧及示例代码,并讨论了位运算的性能优势及其与其他数据结构和算法的结合,旨在帮助读者掌握这一高效的数据处理方法。
63 1
|
4天前
|
存储 C++
【C++数据结构——树】哈夫曼树(头歌实践教学平台习题) 【合集】
【数据结构——树】哈夫曼树(头歌实践教学平台习题)【合集】目录 任务描述 相关知识 测试说明 我的通关代码: 测试结果:任务描述 本关任务:编写一个程序构建哈夫曼树和生成哈夫曼编码。 相关知识 为了完成本关任务,你需要掌握: 1.如何构建哈夫曼树, 2.如何生成哈夫曼编码。 测试说明 平台会对你编写的代码进行测试: 测试输入: 1192677541518462450242195190181174157138124123 (用户分别输入所列单词的频度) 预
33 14
【C++数据结构——树】哈夫曼树(头歌实践教学平台习题) 【合集】
|
4天前
|
Java C++
【C++数据结构——树】二叉树的基本运算(头歌实践教学平台习题)【合集】
本关任务:编写一个程序实现二叉树的基本运算。​ 相关知识 创建二叉树 销毁二叉树 查找结点 求二叉树的高度 输出二叉树 //二叉树节点结构体定义 structTreeNode{ intval; TreeNode*left; TreeNode*right; TreeNode(intx):val(x),left(NULL),right(NULL){} }; 创建二叉树 //创建二叉树函数(简单示例,手动构建) TreeNode*create
31 12
|
4天前
|
C++
【C++数据结构——树】二叉树的性质(头歌实践教学平台习题)【合集】
本文档介绍了如何根据二叉树的括号表示串创建二叉树,并计算其结点个数、叶子结点个数、某结点的层次和二叉树的宽度。主要内容包括: 1. **定义二叉树节点结构体**:定义了包含节点值、左子节点指针和右子节点指针的结构体。 2. **实现构建二叉树的函数**:通过解析括号表示串,递归地构建二叉树的各个节点及其子树。 3. **使用示例**:展示了如何调用 `buildTree` 函数构建二叉树并进行简单验证。 4. **计算二叉树属性**: - 计算二叉树节点个数。 - 计算二叉树叶子节点个数。 - 计算某节点的层次。 - 计算二叉树的宽度。 最后,提供了测试说明及通关代
29 10
|
4天前
|
存储 算法 测试技术
【C++数据结构——树】二叉树的遍历算法(头歌教学实验平台习题) 【合集】
本任务旨在实现二叉树的遍历,包括先序、中序、后序和层次遍历。首先介绍了二叉树的基本概念与结构定义,并通过C++代码示例展示了如何定义二叉树节点及构建二叉树。接着详细讲解了四种遍历方法的递归实现逻辑,以及层次遍历中队列的应用。最后提供了测试用例和预期输出,确保代码正确性。通过这些内容,帮助读者理解并掌握二叉树遍历的核心思想与实现技巧。
18 2
|
20天前
|
存储 运维 监控
探索局域网电脑监控软件:Python算法与数据结构的巧妙结合
在数字化时代,局域网电脑监控软件成为企业管理和IT运维的重要工具,确保数据安全和网络稳定。本文探讨其背后的关键技术——Python中的算法与数据结构,如字典用于高效存储设备信息,以及数据收集、异常检测和聚合算法提升监控效率。通过Python代码示例,展示了如何实现基本监控功能,帮助读者理解其工作原理并激发技术兴趣。
53 20
|
2月前
|
存储 算法 搜索推荐
Python 中数据结构和算法的关系
数据结构是算法的载体,算法是对数据结构的操作和运用。它们共同构成了计算机程序的核心,对于提高程序的质量和性能具有至关重要的作用
|
2月前
|
数据采集 存储 算法
Python 中的数据结构和算法优化策略
Python中的数据结构和算法如何进行优化?
|
2月前
|
并行计算 算法 测试技术
C语言因高效灵活被广泛应用于软件开发。本文探讨了优化C语言程序性能的策略,涵盖算法优化、代码结构优化、内存管理优化、编译器优化、数据结构优化、并行计算优化及性能测试与分析七个方面
C语言因高效灵活被广泛应用于软件开发。本文探讨了优化C语言程序性能的策略,涵盖算法优化、代码结构优化、内存管理优化、编译器优化、数据结构优化、并行计算优化及性能测试与分析七个方面,旨在通过综合策略提升程序性能,满足实际需求。
73 1
|
2月前
|
C语言
【数据结构】栈和队列(c语言实现)(附源码)
本文介绍了栈和队列两种数据结构。栈是一种只能在一端进行插入和删除操作的线性表,遵循“先进后出”原则;队列则在一端插入、另一端删除,遵循“先进先出”原则。文章详细讲解了栈和队列的结构定义、方法声明及实现,并提供了完整的代码示例。栈和队列在实际应用中非常广泛,如二叉树的层序遍历和快速排序的非递归实现等。
264 9