数据结构与算法(八)贪心算法

简介: 数据结构与算法(八)贪心算法

定义

贪心算法又叫做贪婪算法,它在求解某个问题是,总是做出眼前最大利益。

特点

  • 局部最优解
  • 通过局部最优推出全局最优

习题

  1. 某天早上公司领导找你解决一个问题,明天公司有N个同等级的会议需要使用同一个会议室,现在给你这个N个会议的开始和结束时间,你怎么样安排才能使会议室最大利用?即安排最多场次的会议?
    会议时间:0点~9点 | 8点~10点 | 10点~12点 | 8点到~20点
    思考
    这里先给出解决方案:以结束时间按从小到大排序,就能得出最优解。
    首先为什么开始选择最小的9点而不是10点,由于一天只有24个小时,开始选择9点意味着后面还剩15个小时安排其他会议,而选择10点后面只剩14个小时安排会议,显然15个小时安排更多会议的可能性比14个小时安排更多会议的可能性要大,因此证明开始选择越小的结束时间越好。这里就是它的贪心策略。
    同理可得,当确认第一个之后,后面要选的只要选择开始时间>=前面会议的结束时间&&结束时间更小的那个,因为结束时间更小,给后面预留安排会议的时间越大嘛。以上。

代码

public class Meeting implements Comparable<Meeting> {
    public int number;
    public int startTime;
    public int endTime;
    public Meeting(int number, int startTime, int endTime) {
        this.number = number;
        this.startTime = startTime;
        this.endTime = endTime;
    }
    @Override
    public int compareTo(Meeting o) {
        if (endTime > o.endTime) return 1;
        return -1;
    }
    @Override
    public String toString() {
        return "Meeting{" +
                "number=" + number +
                ", startTime=" + startTime +
                ", endTime=" + endTime +
                '}';
    }
    public static void main(String[] args) {
        Scanner scanner = new Scanner(System.in);
        int next = scanner.nextInt();
        List<Meeting> meetings = new ArrayList<>();
        for (int i = 1; i <= next; i++) {
            int startTime = scanner.nextInt();
            int endTime = scanner.nextInt();
            meetings.add(new Meeting(i, startTime, endTime));
        }
        meetings.sort(null);
        System.out.println(meetings);
        System.out.println("===============");
        int curTime = 0;
        for (Meeting meeting : meetings) {
            if(meeting.startTime>=curTime){
                System.out.println(meeting);
                curTime = meeting.endTime;
            }
        }
    }
}
目录
相关文章
|
2月前
|
算法 数据处理 C语言
C语言中的位运算技巧,涵盖基本概念、应用场景、实用技巧及示例代码,并讨论了位运算的性能优势及其与其他数据结构和算法的结合
本文深入解析了C语言中的位运算技巧,涵盖基本概念、应用场景、实用技巧及示例代码,并讨论了位运算的性能优势及其与其他数据结构和算法的结合,旨在帮助读者掌握这一高效的数据处理方法。
65 1
|
3月前
|
存储 人工智能 算法
数据结构与算法细节篇之最短路径问题:Dijkstra和Floyd算法详细描述,java语言实现。
这篇文章详细介绍了Dijkstra和Floyd算法,这两种算法分别用于解决单源和多源最短路径问题,并且提供了Java语言的实现代码。
110 3
数据结构与算法细节篇之最短路径问题:Dijkstra和Floyd算法详细描述,java语言实现。
|
5天前
|
存储 算法 测试技术
【C++数据结构——树】二叉树的遍历算法(头歌教学实验平台习题) 【合集】
本任务旨在实现二叉树的遍历,包括先序、中序、后序和层次遍历。首先介绍了二叉树的基本概念与结构定义,并通过C++代码示例展示了如何定义二叉树节点及构建二叉树。接着详细讲解了四种遍历方法的递归实现逻辑,以及层次遍历中队列的应用。最后提供了测试用例和预期输出,确保代码正确性。通过这些内容,帮助读者理解并掌握二叉树遍历的核心思想与实现技巧。
25 2
|
2月前
|
存储 算法 搜索推荐
Python 中数据结构和算法的关系
数据结构是算法的载体,算法是对数据结构的操作和运用。它们共同构成了计算机程序的核心,对于提高程序的质量和性能具有至关重要的作用
|
2月前
|
数据采集 存储 算法
Python 中的数据结构和算法优化策略
Python中的数据结构和算法如何进行优化?
|
2月前
|
算法
数据结构之路由表查找算法(深度优先搜索和宽度优先搜索)
在网络通信中,路由表用于指导数据包的传输路径。本文介绍了两种常用的路由表查找算法——深度优先算法(DFS)和宽度优先算法(BFS)。DFS使用栈实现,适合路径问题;BFS使用队列,保证找到最短路径。两者均能有效查找路由信息,但适用场景不同,需根据具体需求选择。文中还提供了这两种算法的核心代码及测试结果,验证了算法的有效性。
125 23
|
2月前
|
算法
数据结构之蜜蜂算法
蜜蜂算法是一种受蜜蜂觅食行为启发的优化算法,通过模拟蜜蜂的群体智能来解决优化问题。本文介绍了蜜蜂算法的基本原理、数据结构设计、核心代码实现及算法优缺点。算法通过迭代更新蜜蜂位置,逐步优化适应度,最终找到问题的最优解。代码实现了单链表结构,用于管理蜜蜂节点,并通过适应度计算、节点移动等操作实现算法的核心功能。蜜蜂算法具有全局寻优能力强、参数设置简单等优点,但也存在对初始化参数敏感、计算复杂度高等缺点。
69 20
|
2月前
|
机器学习/深度学习 算法 C++
数据结构之鲸鱼算法
鲸鱼算法(Whale Optimization Algorithm,WOA)是由伊朗研究员Seyedali Mirjalili于2016年提出的一种基于群体智能的全局优化算法,灵感源自鲸鱼捕食时的群体协作行为。该算法通过模拟鲸鱼的围捕猎物和喷出气泡网的行为,结合全局搜索和局部搜索策略,有效解决了复杂问题的优化需求。其应用广泛,涵盖函数优化、机器学习、图像处理等领域。鲸鱼算法以其简单直观的特点,成为初学者友好型的优化工具,但同时也存在参数敏感、可能陷入局部最优等问题。提供的C++代码示例展示了算法的基本实现和运行过程。
72 0
|
2月前
|
算法 Python
在Python编程中,分治法、贪心算法和动态规划是三种重要的算法。分治法通过将大问题分解为小问题,递归解决后合并结果
在Python编程中,分治法、贪心算法和动态规划是三种重要的算法。分治法通过将大问题分解为小问题,递归解决后合并结果;贪心算法在每一步选择局部最优解,追求全局最优;动态规划通过保存子问题的解,避免重复计算,确保全局最优。这三种算法各具特色,适用于不同类型的问题,合理选择能显著提升编程效率。
70 2
|
3月前
|
机器学习/深度学习 存储 缓存
数据结构与算法学习十:排序算法介绍、时间频度、时间复杂度、常用时间复杂度介绍
文章主要介绍了排序算法的分类、时间复杂度的概念和计算方法,以及常见的时间复杂度级别,并简单提及了空间复杂度。
59 1
数据结构与算法学习十:排序算法介绍、时间频度、时间复杂度、常用时间复杂度介绍