408王道数据结构强化——算法题(一)

简介: 408王道数据结构强化——算法题

1.注释以及简写

1.1.最大值——INT_MAX,最小值——INT_MIN

①找最小值初始化为MAX_INT(任何值都比它小);找最大值设置为MIN_INT(任何值都比它大)

int D_min = MAX_INT;    //将D_min初始化为int类型的最大值
for (int i = 0; i < n; i++){    //遍历数组找到数组中的最小值
    if (arr[i] < D_min) D_min = arr[i];
}
int D_max = MIN_INT;    //将D_max设置为int类型的最小值

②还有一种思路:初始化时,将arr[0]赋值给D_min

1.2.比大小函数max(a,b) min(a,b)

加注释直接用(与1.1中代码相比较)

int D_min = MAX_INT;    //将D_min初始化为INT类型的最大值
for (int i = 0; i < n; i++) {
    D_min = min(D_min, arr[i]);    //D_min = D_min和arr[i]中的较小值
}

1.3.使用CIN、COUT代替PRINTF、SCANF

cin >> A[0];
cout << A[0];

1.4.i++和++i

i++先对i进行处理,再自增;++i先自增再对i处理

1.5.交换函数swap(a,b)

①直接用,加注释

②原定义中是采用的指针方式,因此交换的是两个地址空间内的内容

if (arr[i] < arr[j]) swap(arr[i],arr[i+1]);    //arr[i] < arr[j]时,交换A[i]和A[i+1]的值
//等价于
if (arr[i] < arr[j]) {
    int temp = arr[i];
    arr[i] = arr[j];
    arr[j] = temp;
}

2.复杂度

1.时间上尽可能高效→不管空间

2.时间和空间两方面都尽可能高效(等价于尽可能高效)→时间优先,空间次要

3.空间复杂度为O(1)且时间上尽可能高效→时间优先,限定空间O(1)

4.什么都没说→能做出来就行

5.只考虑递归和循环

①循环:

1f0769a5c27f4d7abdcbab405a7672f8.png5936f03d2974440fbd40232cf98cc227.png

②递归:时间复杂度为递归的层数;时间复杂度为递归的次数

a3dda946e8264b6495068ac8d7b7314b.png

3.数组

3.1.暴力求解

1.枚举:穷尽所有可能→for循环

2.对无序数组排序→快速排序

3.2.优化

1.考虑没有使用到的条件

2.过度使用条件:例如并没有要求排序的条件下却使用排序的方法做

3.考虑别的思路:

①折半算法:

(1)要求:有序(根据当前查找的结果方便下次查找);数组;一个

(2)代码实现:时间复杂度O(logn),空间复杂度O(1)

int Binary_Search(int arr[], int key, int n) {
    int low = 0, high = n - 1, mid;
    while (low <= high) {
        mid = (low + high) / 2;
        if (arr[mid == key) return mid;    //mid指向的元素和key相等,返回mid,即数组下标
        else if (arr[mid] < key) low = mid + 1;    //mid指向的元素比key小,去右半部分
        else high = mid - 1;    //mid指向的元素比key大,去左半部分
    }
    //如果数组中有和key相等的元素,则一定会在while循环中return
    //while循环结束后还没有执行return,则说明数组中没有和key相等的元素,return-1
    return -1;
}

②指针后移:要求:有序(利用有序性,当前指向的元素是各自表中的最小值,在它们中取最小值即是当前表中所有元素的最小值);多个;线性表(可以是数组,也可以是链表

③贪心算法:局部最优

④动态规划:以空间换时间,空间保存状态

4.单链表

1.不能快排,不能折半查找(没有数组随机存取的特性)

2.注意条件:空间复杂度O(1),不可以改变链表结构

3.数据结构定义:

typedef struct LNode{    //单链表
    struct LNode *next;
    int data;
}LNode, *LinkList;
typedef struct LNode{    //双链表
    struct LNode *prior, *next;
    int data;
}LNode, *LinkList;

4.注意是否有头结点

5.暴力解法:①枚举 ②利用数组保存链表元素(注意使用条件)

6.优化方向:

①前后指针:前后指针相差n个距离,同时向后移动,距离不变(查找倒数第k个)

②快慢指针:链表存在回路,走得快的指针会追上走得慢的指针

③头插法:逆置链表(从头结点后的第一个元素取,然后将该元素用头插法插入头结点后)

④数组指针后移

⑤以空间换时间(长度为n的数组)

5.树

1.递归方式实现,不用记忆非递归

2.定义:左右孩子表示法最常用8cb2bb0c0acf44d1b07b7ef8fc8e66b5.png

3.树的遍历

相关文章
|
3天前
|
机器学习/深度学习 存储 算法
数据结构与算法 动态规划(启发式搜索、遗传算法、强化学习待完善)
数据结构与算法 动态规划(启发式搜索、遗传算法、强化学习待完善)
11 1
|
7天前
|
搜索推荐 C语言
【C语言/数据结构】排序(归并排序|计数排序|排序算法复杂度)
【C语言/数据结构】排序(归并排序|计数排序|排序算法复杂度)
11 0
|
7天前
|
存储 算法
Leetcode 30天高效刷数据结构和算法 Day1 两数之和 —— 无序数组
给定一个无序整数数组和目标值,找出数组中和为目标值的两个数的下标。要求不重复且可按任意顺序返回。示例:输入nums = [2,7,11,15], target = 9,输出[0,1]。暴力解法时间复杂度O(n²),优化解法利用哈希表实现,时间复杂度O(n)。
19 0
|
14天前
|
存储 机器学习/深度学习 算法
|
18天前
|
存储 算法 Python
程序设计的艺术:算法与数据结构的魅力
程序设计的艺术:算法与数据结构的魅力
8 0
|
18天前
|
存储 算法
数据结构开篇(普普通通浅浅聊数据结构)什么是数据结构 、什么是算法、重要性、如何学好数据结构呢
数据结构开篇(普普通通浅浅聊数据结构)什么是数据结构 、什么是算法、重要性、如何学好数据结构呢
|
25天前
|
存储 人工智能 算法
有哪些数据结构与算法是程序员必须要掌握的?——“数据结构与算法”
有哪些数据结构与算法是程序员必须要掌握的?——“数据结构与算法”
|
2天前
|
算法 数据安全/隐私保护 计算机视觉
基于二维CS-SCHT变换和LABS方法的水印嵌入和提取算法matlab仿真
该内容包括一个算法的运行展示和详细步骤,使用了MATLAB2022a。算法涉及水印嵌入和提取,利用LAB色彩空间可能用于隐藏水印。水印通过二维CS-SCHT变换、低频系数处理和特定解码策略来提取。代码段展示了水印置乱、图像处理(如噪声、旋转、剪切等攻击)以及水印的逆置乱和提取过程。最后,计算并保存了比特率,用于评估水印的稳健性。
|
3天前
|
存储 算法 数据可视化
基于harris角点和RANSAC算法的图像拼接matlab仿真
本文介绍了使用MATLAB2022a进行图像拼接的流程,涉及Harris角点检测和RANSAC算法。Harris角点检测寻找图像中局部曲率变化显著的点,RANSAC则用于排除噪声和异常点,找到最佳匹配。核心程序包括自定义的Harris角点计算函数,RANSAC参数设置,以及匹配点的可视化和仿射变换矩阵计算,最终生成全景图像。
|
3天前
|
算法 Serverless
m基于遗传优化的LDPC码NMS译码算法最优归一化参数计算和误码率matlab仿真
MATLAB 2022a仿真实现了遗传优化的归一化最小和(NMS)译码算法,应用于低密度奇偶校验(LDPC)码。结果显示了遗传优化的迭代过程和误码率对比。遗传算法通过选择、交叉和变异操作寻找最佳归一化因子,以提升NMS译码性能。核心程序包括迭代优化、目标函数计算及性能绘图。最终,展示了SNR与误码率的关系,并保存了关键数据。
12 1