《数据分析实战:基于EXCEL和SPSS系列工具的实践》一3.4.1 放到数据库中处理

简介:

本节书摘来华章计算机《数据分析实战:基于EXCEL和SPSS系列工具的实践》一书中的第3章 ,第3.4.1节,纪贺元 著 更多章节内容可以访问云栖社区“华章计算机”公众号查看。

3.4.1 放到数据库中处理

EXCEL只是一个办公软件,在处理大数据量方面,它远远没有专业的数据库给力。专业数据库能够处理比较大的数据量,并且处理速度快,在处理数据冗余等方面效率高,远非EXCEL可比。对于专业的数据库,个人的一个感觉是,现在用ACCESS的人越来越少,越来越多的人转向MySQL,除了MySQL具有开源免费的特征之外,它还能和R或者Python组合使用,这应该也是一个很重要的原因。

相关文章
|
14天前
|
数据采集 机器学习/深度学习 数据可视化
使用Jupyter Notebook进行数据分析:入门与实践
【6月更文挑战第5天】Jupyter Notebook是数据科学家青睐的交互式计算环境,用于创建包含代码、方程、可视化和文本的文档。本文介绍了其基本用法和安装配置,通过一个数据分析案例展示了如何使用Notebook进行数据加载、清洗、预处理、探索、可视化以及建模。Notebook支持多种语言,提供直观的交互体验,便于结果呈现和分享。它是高效数据分析的得力工具,初学者可通过本文案例开始探索。
|
15天前
|
SQL 存储 数据库
excel导入sql数据库
将Excel数据导入SQL数据库是一个相对常见的任务,可以通过多种方法来实现。以下是一些常用的方法: ### 使用SQL Server Management Studio (SSMS) 1
|
19天前
|
SQL 运维 监控
关系型数据库性能监控工具
【5月更文挑战第21天】
39 2
|
1天前
|
SQL 关系型数据库 MySQL
MySQL数据库-概括与常用图形管理工具
MySQL数据库-概括与常用图形管理工具
|
3天前
|
数据采集 数据可视化 数据挖掘
数据挖掘实战:使用Python进行数据分析与可视化
在大数据时代,Python因其强大库支持和易学性成为数据挖掘的首选语言。本文通过一个电商销售数据案例,演示如何使用Python进行数据预处理(如处理缺失值)、分析(如销售额时间趋势)和可视化(如商品类别销售条形图),揭示数据背后的模式。安装`pandas`, `numpy`, `matplotlib`, `seaborn`后,可以按照提供的代码步骤,从读取CSV到数据探索,体验Python在数据分析中的威力。这只是数据科学的入门,更多高级技术等待发掘。【6月更文挑战第14天】
31 11
|
4天前
|
数据采集 机器学习/深度学习 数据可视化
数据挖掘实战:Python在金融数据分析中的应用案例
Python在金融数据分析中扮演关键角色,用于预测市场趋势和风险管理。本文通过案例展示了使用Python库(如pandas、numpy、matplotlib等)进行数据获取、清洗、分析和建立预测模型,例如计算苹果公司(AAPL)股票的简单移动平均线,以展示基本流程。此示例为更复杂的金融建模奠定了基础。【6月更文挑战第13天】
22 3
|
7天前
|
JavaScript 关系型数据库 MySQL
Python实战:从猎聘网获取职位信息并存入数据库
Python实战:从猎聘网获取职位信息并存入数据库
|
7天前
|
SQL 关系型数据库 MySQL
mysqldiff - Golang 针对 MySQL 数据库表结构的差异 SQL 工具
Golang 针对 MySQL 数据库表结构的差异 SQL 工具。https://github.com/camry/mysqldiff
40 7
|
8天前
|
JSON 数据挖掘 API
数据分析实战丨基于pygal与requests分析GitHub最受欢迎的Python库
数据分析实战丨基于pygal与requests分析GitHub最受欢迎的Python库
18 2
|
9天前
|
SQL 安全 数据库
精通SQL:数据库查询与管理的实战指南
一、引言 在当今数字化时代,[数据库](https://www.iyxwzx.com/)已成为企业、组织和个人不可或缺的数据[管理](https://www.iyxwzx.com/news/)工具