L3-009 长城 (30 分)(数学知识)

简介: L3-009 长城 (30 分)(数学知识)

正如我们所知,中国古代长城的建造是为了抵御外敌入侵。在长城上,建造了许多烽火台。每个烽火台都监视着一个特定的地区范围。一旦某个地区有外敌入侵,值守在对应烽火台上的士兵就会将敌情通报给周围的烽火台,并迅速接力地传递到总部。


现在如图1所示,若水平为南北方向、垂直为海拔高度方向,假设长城就是依次相联的一系列线段,而且在此范围内的任一垂直线与这些线段有且仅有唯一的交点。

b0015607e53bf21a421e60e1b86175ac.jpg


进一步地,假设烽火台只能建造在线段的端点处。我们认为烽火台本身是没有高度的,每个烽火台只负责向北方(图1中向左)瞭望,而且一旦有外敌入侵,只要敌人与烽火台之间未被山体遮挡,哨兵就会立即察觉。当然,按照这一军规,对于南侧的敌情各烽火台并不负责任。一旦哨兵发现敌情,他就会立即以狼烟或烽火的形式,向其南方的烽火台传递警报,直到位于最南侧的总部。


以图2中的长城为例,负责守卫的四个烽火台用蓝白圆点示意,最南侧的总部用红色圆点示意。如果红色星形标示的地方出现敌情,将被哨兵们发现并沿红色折线将警报传递到总部。当然,就这个例子而言只需两个烽火台的协作,但其他位置的敌情可能需要更多。


然而反过来,即便这里的4个烽火台全部参与,依然有不能覆盖的(黄色)区域。

4ce55b6f1b8c4909c0e0ade31a5476d4.jpg


图 2

另外,为避免歧义,我们在这里约定,与某个烽火台的视线刚好相切的区域都认为可以被该烽火台所监视。以图3中的长城为例,若A、B、C、D点均共线,且在D点设置一处烽火台,则A、B、C以及线段BC上的任何一点都在该烽火台的监视范围之内。

57142eae10ad3e5b386228f00b81144b.jpg


图 3

好了,倘若你是秦始皇的太尉,为不致出现更多孟姜女式的悲剧,如何在保证长城安全的前提下,使消耗的民力(建造的烽火台)最少呢?


输入格式:

输入在第一行给出一个正整数N(3 ≤ N ≤105),即刻画长城边缘的折线顶点(含起点和终点)数。随后N行,每行给出一个顶点的xy坐标,其间以空格分隔。注意顶点从南到北依次给出,第一个顶点为总部所在位置。坐标为区间[−109,109)内的整数,且没有重合点。


输出格式:

在一行中输出所需建造烽火台(不含总部)的最少数目。


输入样例:

10
67 32
48 -49
32 53
22 -44
19 22
11 40
10 -65
-1 -23
-3 31
-7 59


输出样例:

2


思路:因为题目规定与某个烽火台的视线刚好相切的区域都认为可以被该烽火台所监视,所以可以根据斜率来判断有没有凸点就证明需建造烽火台


#include<bits/stdc++.h>
using namespace std;
const int N=1e5+10;
int a[N],b[N],vis[N],n,tt,st[N],ans;
bool check(int l,int mid,int r)
{
    if((b[l]-b[r])*1.0/(a[l]-a[r])>=(b[mid]-b[l])*1.0/(a[mid]-a[l])) return true;
    else return false;
}
int main()
{
    cin>>n;
    for(int i=0;i<n;i++) cin>>a[i]>>b[i];
    for(int i=0;i<n;i++)
    {
        if(tt)//栈不为空
        {
            while(tt>1&&check(i,st[tt],st[tt-1])) tt--;//栈中元素大于一个,并且不是凸点
            if(tt!=1&&!vis[st[tt]])//有凸点
            {
                vis[st[tt]]=1;
                ans++;
            }
        }
        st[++tt]=i;//进栈
    }
    cout<<ans;
    return 0;
}


目录
相关文章
|
4月前
【天梯赛】L1-095 分寝室
输出的方案对应女生都是 24/4=6 人间、男生都是 60/6=10 人间,人数差为 4。满足前三项要求的分配方案还有两种,即女生 6 间(都是 4 人间)、男生 4 间(都是 15 人间);同时,每间女寝人数必须都一样,每间男寝人数必须都一样,也就是女生总人数对女寝数取模为0,男生总人数对男寝数取模为0。输入在一行中给出 3 个正整数 n0​、n1​、n,分别对应女生人数、男生人数、寝室数。按题意模拟,因为知道总寝室数为n,所以可以从1~n-1暴力枚举女寝 i 的数量,那么男寝的数量则为 c-i。
69 6
|
5月前
1052 卖个萌 (20 分)//部分正确
1052 卖个萌 (20 分)//部分正确
|
C++ Python
【浙江大学PAT真题练习乙级】1001 害死人不偿命的(3n+1)猜想(15分)真题解析
【浙江大学PAT真题练习乙级】1001 害死人不偿命的(3n+1)猜想(15分)真题解析
L1-079 天梯赛的善良 (20 分)
L1-079 天梯赛的善良 (20 分)
215 0
爱迪生的名言 (5 分)
爱迪生的名言 (5 分)
151 0
|
算法 测试技术
h0103. 末日算法 (10 分)
h0103. 末日算法 (10 分)
232 0
7-7 天梯赛的善良 (20 分)
7-7 天梯赛的善良 (20 分)
282 0
L2-029 特立独行的幸福 (25 分)
L2-029 特立独行的幸福 (25 分)
218 0
|
存储 算法 容器
天梯赛二阶题——L2-015 互评成绩(25 分)
学生互评作业的简单规则是这样定的:每个人的作业会被k个同学评审,得到k个成绩。系统需要去掉一个最高分和一个最低分,将剩下的分数取平均,就得到这个学生的最后成绩。本题就要求你编写这个互评系统的算分模块。
366 0
天梯赛二阶题——L2-015 互评成绩(25 分)
励志 - 13岁少年成数学大赛最小入围者
励志 - 13岁少年成数学大赛最小入围者
126 0
励志 - 13岁少年成数学大赛最小入围者