LyScript 实现应用层钩子扫描器

简介: Capstone 是一个轻量级的多平台、多架构的反汇编框架,该模块支持目前所有通用操作系统,反汇编架构几乎全部支持,本篇文章将运用LyScript插件结合Capstone反汇编引擎实现一个钩子扫描器。

Capstone 是一个轻量级的多平台、多架构的反汇编框架,该模块支持目前所有通用操作系统,反汇编架构几乎全部支持,本篇文章将运用LyScript插件结合Capstone反汇编引擎实现一个钩子扫描器。

要实现应用层钩子扫描,我们需要得到程序内存文件的机器码以及磁盘中的机器码,并通过capstone这个第三方反汇编引擎,对两者进行反汇编,最后逐条对比汇编指令,实现进程钩子扫描的效果。

通过LyScript插件读取出内存中的机器码,然后交给第三方反汇编库执行,并将结果输出成字典格式。

#coding: utf-8
import binascii,os,sys
import pefile
from capstone import *
from LyScript32 import MyDebug

# 得到内存反汇编代码
def get_memory_disassembly(address,offset,len):
    # 反汇编列表
    dasm_memory_dict = []

    # 内存列表
    ref_memory_list = bytearray()

    # 读取数据
    for index in range(offset,len):
        char = dbg.read_memory_byte(address + index)
        ref_memory_list.append(char)

    # 执行反汇编
    md = Cs(CS_ARCH_X86,CS_MODE_32)
    for item in md.disasm(ref_memory_list,0x1):
        addr = int(pe_base) + item.address
        dasm_memory_dict.append({"address": str(addr), "opcode": item.mnemonic + " " + item.op_str})
    return dasm_memory_dict

if __name__ == "__main__":
    dbg = MyDebug()
    dbg.connect()

    pe_base = dbg.get_local_base()
    pe_size = dbg.get_local_size()

    print("模块基地址: {}".format(hex(pe_base)))
    print("模块大小: {}".format(hex(pe_size)))

    # 得到内存反汇编代码
    dasm_memory_list = get_memory_disassembly(pe_base,0,pe_size)
    print(dasm_memory_list)

    dbg.close()

效果如下:

image.png

我们将文件反汇编也写一下,然后让其对比,这样就可以实现扫描内存与文件中的汇编指令是否一致。

#coding: utf-8
import binascii,os,sys
import pefile
from capstone import *
from LyScript32 import MyDebug

# 得到内存反汇编代码
def get_memory_disassembly(address,offset,len):
    # 反汇编列表
    dasm_memory_dict = []

    # 内存列表
    ref_memory_list = bytearray()

    # 读取数据
    for index in range(offset,len):
        char = dbg.read_memory_byte(address + index)
        ref_memory_list.append(char)

    # 执行反汇编
    md = Cs(CS_ARCH_X86,CS_MODE_32)
    for item in md.disasm(ref_memory_list,0x1):
        addr = int(pe_base) + item.address
        dic = {"address": str(addr), "opcode": item.mnemonic + " " + item.op_str}
        dasm_memory_dict.append(dic)
    return dasm_memory_dict

# 反汇编文件中的机器码
def get_file_disassembly(path):
    opcode_list = []
    pe = pefile.PE(path)
    ImageBase = pe.OPTIONAL_HEADER.ImageBase

    for item in pe.sections:
        if str(item.Name.decode('UTF-8').strip(b'\x00'.decode())) == ".text":
            # print("虚拟地址: 0x%.8X 虚拟大小: 0x%.8X" %(item.VirtualAddress,item.Misc_VirtualSize))
            VirtualAddress = item.VirtualAddress
            VirtualSize = item.Misc_VirtualSize
            ActualOffset = item.PointerToRawData
    StartVA = ImageBase + VirtualAddress
    StopVA = ImageBase + VirtualAddress + VirtualSize
    with open(path,"rb") as fp:
        fp.seek(ActualOffset)
        HexCode = fp.read(VirtualSize)

    md = Cs(CS_ARCH_X86, CS_MODE_32)
    for item in md.disasm(HexCode, 0):
        addr = hex(int(StartVA) + item.address)
        dic = {"address": str(addr) , "opcode": item.mnemonic + " " + item.op_str}
        # print("{}".format(dic))
        opcode_list.append(dic)
    return opcode_list

if __name__ == "__main__":
    dbg = MyDebug()
    dbg.connect()

    pe_base = dbg.get_local_base()
    pe_size = dbg.get_local_size()

    print("模块基地址: {}".format(hex(pe_base)))
    print("模块大小: {}".format(hex(pe_size)))

    # 得到内存反汇编代码
    dasm_memory_list = get_memory_disassembly(pe_base,0,pe_size)
    dasm_file_list = get_file_disassembly("d://win32project1.exe")

    # 循环对比内存与文件中的机器码
    for index in range(0,len(dasm_file_list)):
        if dasm_memory_list[index] != dasm_file_list[index]:
            print("地址: {:8} --> 内存反汇编: {:32} --> 磁盘反汇编: {:32}".
                  format(dasm_memory_list[index].get("address"),dasm_memory_list[index].get("opcode"),dasm_file_list[index].get("opcode")))
    dbg.close()

此处如果一致,则说明没有钩子,如果不一致则输出,这里的输出结果不一定准确,此处只是抛砖引玉。

image.png

目录
相关文章
|
5月前
|
监控 安全 Java
源代码如何注入钩子
源代码如何注入钩子
997 5
|
5月前
|
缓存 监控 网络协议
使用 Scapy 库编写 ARP 缓存中毒脚本
使用 Scapy 库编写 ARP 缓存中毒脚本
|
存储 安全 Java
4.7 x64dbg 应用层的钩子扫描
所谓的应用层钩子(Application-level hooks)是一种编程技术,它允许应用程序通过在特定事件发生时执行特定代码来自定义或扩展其行为。这些事件可以是用户交互,系统事件,或者其他应用程序内部的事件。应用层钩子是在应用程序中添加自定义代码的一种灵活的方式。它们可以用于许多不同的用途,如安全审计、性能监视、访问控制和行为修改等。应用层钩子通常在应用程序的运行时被调用,可以执行一些预定义的操作或触发一些自定义代码。
113 0
4.7 x64dbg 应用层的钩子扫描
|
安全 编译器
4.1 应用层Hook挂钩原理分析
InlineHook 是一种计算机安全编程技术,其原理是在计算机程序执行期间进行拦截、修改、增强现有函数功能。它使用钩子函数(也可以称为回调函数)来截获程序执行的各种事件,并在事件发生前或后进行自定义处理,从而控制或增强程序行为。Hook技术常被用于系统加速、功能增强、等领域。本章将重点讲解Hook是如何实现的,并手动封装实现自己的Hook挂钩模板。
151 0
|
XML Android开发 数据格式
WebService接口调试如此简单
WebService接口调试如此简单
|
网络协议
驱动开发:内核RIP劫持实现DLL注入
本章将探索内核级DLL模块注入实现原理,DLL模块注入在应用层中通常会使用`CreateRemoteThread`直接开启远程线程执行即可,驱动级别的注入有多种实现原理,而其中最简单的一种实现方式则是通过劫持EIP的方式实现,其实现原理可总结为,挂起目标进程,停止目标进程EIP的变换,在目标进程开启空间,并把相关的指令机器码和数据拷贝到里面去,然后直接修改目标进程EIP使其强行跳转到我们拷贝进去的相关机器码位置,执行相关代码后,然后再次跳转回来执行原始指令集。
399 0
|
Java fastjson Maven
Android组件化开发(二)--网络请求组件封装
前面一篇文章我们讲解了`maven私服`的搭建,maven私服在`组件化框架`中有一个很重要的地位就是可以将我们的`lib`库放到局域网中,供公司其他开发者使用,实现类库的分享。 下面是这个系列准备实现的一个`组件化实战项目框架`:
|
API
LyScript 实现Hook隐藏调试器
LyScript 插件集成的内置API函数可灵活的实现绕过各类反调试保护机制,前段时间发布的那一篇文章并没有详细讲解各类反调试机制的绕过措施,本次将补充这方面的知识点,运用LyScript实现绕过大多数通用调试机制,实现隐藏调试器的目的。
69 0
LyScript 实现Hook隐藏调试器
|
安全 API
LyScript 实现绕过反调试保护
LyScript插件中内置的方法可实现各类反调试以及屏蔽特定API函数的功能,这类功能在应对病毒等恶意程序时非常有效,例如当程序调用特定API函数时我们可以将其拦截,从而实现保护系统在调试时不被破坏的目的。
242 0
LyScript 实现绕过反调试保护
|
Web App开发 JavaScript 前端开发
【selenium】反屏蔽方法
简介:【selenium】反屏蔽方法
【selenium】反屏蔽方法