2022数维杯C题如何利用大脑结构诊断阿尔茨海默氏病思路分析

简介: Problem C:How to Diagnose Alzheimer's Disease Using Brain StructuralFeatures and Cognitive Behavioral Features

问题C:如何利用大脑结构诊断阿尔茨海默氏病

击链接获取更多资料:数维杯资料获取

点击链接获取更多资料:数维杯资料获取

点击链接获取更多资料数维杯资料获取


image.png

image.png


特征和认知行为特征

阿尔茨海默病 (AD) 是一种进行性神经退行性疾病,发病隐匿。其临床特征为 痴呆,包括记忆障碍、失语症、语言障碍、失认症、视觉空间技能障碍、执行功能 障碍、人格和行为改变,其原因尚不清楚。它的特征是进行日常生活活动的能力逐 渐下降,并伴有各种神经精神症状和行为障碍。该疾病通常在老年人中进行性发展 ,并在发病10-20年后因并发症而死亡。

阿尔茨海默病的临床前阶段,也被称为轻度认知障碍 (MCI) ,是一种介于正 常和严重之间的过渡状态。由于患者及其家属对该疾病的认知有限,67%的患者被 诊断为中度至重度,错过了最佳干预阶段。因此,早期准确诊断阿尔茨海默病和轻 度认知障碍具有重要意义。

附加数据包含特定信息特征4850认知正常老年人 (CN) ,1416例主观记忆投诉 (SMC) ,2968例早期轻度认知障碍 (EMCI) ,5236例晚期轻度认知障碍 (LMCI) 和1738名阿尔茨海默病 (AD) 患者收集在不同的时间点 ( 一个时间点是一个数量) 。请利用附录中提供的不同类别人群的大脑结构特征和认知行为特征,构建阿尔茨 海默病识别模型,设计一种智能诊断方法,准确诊断阿尔茨海默病。

(1)对所附数据的特征指标进行预处理,调查数据特征与阿尔茨海默病诊断之间的 相关性。

(2)利用所附的大脑结构特征和认知行为特征来设计一种阿尔茨海默病的智能诊断

(3)首先,将CN、MCI和AD聚为三大类。然后,对于MCI中包含的三个子类 (SMC、 EMCI和LMCI) ,聚类继续细化为三个子类。

(4)附件中相同的样本包含了在不同时间点收集的特征,请分析它们与时间点的关 系,以揭示不同类别疾病随时间的演变模式。

(5)请查阅相关文献,描述CN、SMC、EMCI、LMCI、AD五类患者的早期干预和诊断标 准。




2022_

ShuWei Cup

Problem CHow to Diagnose Alzheimer's Disease Using Brain Structural

Features and Cognitive Behavioral Features

Alzheimer's disease (AD) is a progressive neurodegenerative disease with an

insidious onset. It is characterized clinically by a full spectrum of dementia, including

memory impairment, aphasia, dysfluency, agnosia, impairment of visuospatial skills,

executive dysfunction, and personality and behavioral changes, the cause of which is

still unknown. It is characterized by a progressive decline in the ability to perform

activities of daily living, with various neuropsychiatric symptoms and behavioral

disturbances. The disease is usually progressive in the elderly, with progressive loss of

independent living skills and death from complications 10 to 20 years after the onset

of the disease.

The preclinical stage of Alzheimer's disease, also known as mild cognitive

impairment (MCI), is a transitional state between normal and severe. Due to the

limited cognition of the disease by patients and their families, 67% of patients were

diagnosed as moderate to severe and had missed the best intervention stage. Therefore,

early and accurate diagnosis of Alzheimer's disease and mild cognitive impairment is

of great significance.

The attached data contain specific information characteristics of 4850 cognitive

normal elderly (CN), 1416 patients with subjective memory complaint (SMC), 2968

patients with early mild cognitive impairment (EMCI), 5236 patients with late mild

cognitive impairment (LMCI) and 1738 patients with Alzheimer's disease (AD)

collected at different time points (one time point is a quantity). Please use the brain

structural characteristics and cognitive behavioral characteristics of the different

categories of people provided in the Appendix to construct an Alzheimer's disease

identification model and design an intelligent diagnostic method to accurately

diagnose Alzheimer's disease.

1Preprocess the characteristic indicators of the attached data to investigate the

correlation between data characteristics and the diagnosis of Alzheimer's disease.

2Use the attached structural brain features and cognitive behavioral features to

design an intelligent diagnosis of Alzheimer's disease.

3First, cluster CN, MCI and AD into three major classes. Then, for the three

subclasses contained in MCI (SMC, EMCI, and LMCI), the clustering was continued

to be refined into three subclasses.

4The same sample in the annex contains features collected at different time

points, please analyze them in relation to the time points to uncover patterns in the

evolution of different categories of diseases over time.

5Please consult the relevant literature to describe the early intervention and

diagnostic criteria for the five categories of CN, SMC, EMCI, LMCI, and AD.




相关文章
|
8月前
|
运维 安全 数据挖掘
【数据挖掘】离群点概念、类型、检测的挑战概述(图文解释 超详细)
【数据挖掘】离群点概念、类型、检测的挑战概述(图文解释 超详细)
573 0
|
7月前
|
算法
计算机算法设计与分析 第1章 算法概述 (笔记)
计算机算法设计与分析 第1章 算法概述 (笔记)
|
8月前
|
算法 数据可视化 数据挖掘
R语言社区发现算法检测心理学复杂网络:spinglass、探索性图分析walktrap算法与可视化
R语言社区发现算法检测心理学复杂网络:spinglass、探索性图分析walktrap算法与可视化
|
8月前
|
机器学习/深度学习 存储 算法
强化深度学习中使用Dyna-Q算法和优先遍历算法在机器人实战中的对比分析(超详细 附源码)
强化深度学习中使用Dyna-Q算法和优先遍历算法在机器人实战中的对比分析(超详细 附源码)
77 0
|
数据挖掘 测试技术 BI
霍桑实验-数据分析手段彻底失效的经典案例
霍桑实验-数据分析手段彻底失效的经典案例
|
机器学习/深度学习
机器学习增强量子化学领域的新突破,用半经验量子力学方法的结构来构建动态响应的哈密顿量
机器学习增强量子化学领域的新突破,用半经验量子力学方法的结构来构建动态响应的哈密顿量
271 0
机器学习增强量子化学领域的新突破,用半经验量子力学方法的结构来构建动态响应的哈密顿量
|
编解码 自然语言处理 数据可视化
MIM方法为什么简单高效?可视化和大规模实验给出了答案
MIM方法为什么简单高效?可视化和大规模实验给出了答案
237 0
MIM方法为什么简单高效?可视化和大规模实验给出了答案
|
供应链 算法 数据挖掘
谈谈预后性分析是预测性分析的有益补充
预测分析是企业展望未来的主要应用方式。市场营销、零售、生产、设备管理、供应链管理以及许多其他应用都显示出预测的价值和力量,可以作为预测未来结果的工具。
谈谈预后性分析是预测性分析的有益补充
|
传感器 数据可视化 算法
文献精读 | 基于数据驱动的动态BIM平台下的结构性能监测
文献精读 | 基于数据驱动的动态BIM平台下的结构性能监测
文献精读 | 基于数据驱动的动态BIM平台下的结构性能监测
|
存储 分布式计算 监控
OushuDB 小课堂丨描述性分析如何利用数据做出更好的决策
OushuDB 小课堂丨描述性分析如何利用数据做出更好的决策
124 0