《Python数据分析与挖掘实战》一3.1 数据质量分析

简介:

本节书摘来自华章出版社《Python数据分析与挖掘实战》一书中的第3章,第3.1节,作者 张良均 王路 谭立云 苏剑林,更多章节内容可以访问云栖社区“华章计算机”公众号查看

3.1 数据质量分析

数据质量分析是数据挖掘中数据准备过程的重要一环,是数据预处理的前提,也是数据挖掘分析结论有效性和准确性的基础,没有可信的数据,数据挖掘构建的模型将是空中楼阁。
数据质量分析的主要任务是检查原始数据中是否存在脏数据,脏数据一般是指不符合要求,以及不能直接进行相应分析的数据。在常见的数据挖掘工作中,脏数据包括如下内容。
缺失值。
异常值。
不一致的值。
重复数据及含有特殊符号(如#、¥、*)的数据。
本小节将主要对数据中的缺失值、异常值和一致性进行分析。

3.1.1 缺失值分析

数据的缺失主要包括记录的缺失和记录中某个字段信息的缺失,两者都会造成分析结果的不准确,以下从缺失值产生的原因及影响等方面展开分析。
(1)缺失值产生的原因
1)有些信息暂时无法获取,或者获取信息的代价太大。
2)有些信息是被遗漏的。可能是因为输入时认为不重要、忘记填写或对数据理解错误等一些人为因素而遗漏,也可能是由于数据采集设备的故障、存储介质的故障、传输媒体的故障等非人为原因而丢失。
3)属性值不存在。在某些情况下,缺失值并不意味着数据有错误。对一些对象来说某些属性值是不存在的,如一个未婚者的配偶姓名、一个儿童的固定收入等。
(2)缺失值的影响
1)数据挖掘建模将丢失大量的有用信息。
2)数据挖掘模型所表现出的不确定性更加显著,模型中蕴涵的规律更难把握。
3)包含空值的数据会使建模过程陷入混乱,导致不可靠的输出。
(3)缺失值的分析
使用简单的统计分析,可以得到含有缺失值的属性的个数,以及每个属性的未缺失数、缺失数与缺失率等。
从总体上来说,缺失值的处理分为删除存在缺失值的记录、对可能值进行插补和不处理3种情况,将在4.1.1节详细介绍。

3.1.2 异常值分析

异常值分析是检验数据是否有录入错误以及含有不合常理的数据。忽视异常值的存在是十分危险的,不加剔除地把异常值包括进数据的计算分析过程中,对结果会产生不良影响;重视异常值的出现,分析其产生的原因,常常成为发现问题进而改进决策的契机。
异常值是指样本中的个别值,其数值明显偏离其余的观测值。异常值也称为离群点,异常值的分析也称为离群点分析。
(1)简单统计量分析
可以先对变量做一个描述性统计,进而查看哪些数据是不合理的。最常用的统计量是最大值和最小值,用来判断这个变量的取值是否超出了合理的范围。如客户年龄的最大值为199岁,则该变量的取值存在异常。
(2)3原则
如果数据服从正态分布,在3原则下,异常值被定义为一组测定值中与平均值的偏差超过3倍标准差的值。在正态分布的假设下,距离平均值3之外的值出现的概率为P(|x-|>3)≤0.003,属于极个别的小概率事件。
如果数据不服从正态分布,也可以用远离平均值的多少倍标准差来描述。
(3)箱型图分析
箱型图提供了识别异常值的一个标准:异常值通常被定义为小于QL-1.5IQR或大于QU+1.5IQR的值。QL称为下四分位数,表示全部观察值中有四分之一的数据取值比它小;QU称为上四分位数,表示全部观察值中有四分之一的数据取值比它大;IQR称为四分位数间距,是上四分位数QU与下四分位数QL之差,其间包含了全部观察值的一半。


197c74ba1ba9a657114b9be36ce11d3300b29edd

箱型图依据实际数据绘制,没有对数据作任何限制性要求(如服从某种特定的分布形式),它只是真实直观地表现数据分布的本来面貌;另一方面,箱型图判断异常值的标准以四分位数和四分位距为基础,四分位数具有一定的鲁棒性:多达25%的数据可以变得任意远而不会很大地扰动四分位数,所以异常值不能对这个标准施加影响。由此可见,箱型图识别异常值的结果比较客观,在识别异常值方面有一定的优越性,如图3-1所示。
在餐饮系统中的销量额数据可能出现缺失值和异常值,如表3-1中数据所示。
image

分析餐饮系统日销量额数据可以发现,其中有部分数据image
是缺失的,但是如果数据记录和属性较多,使用人工分辨的方法就不切合实际,所以这里需要编写程序来检测出含有缺失值的记录和属性以及缺失率个数和缺失率等。
在Python的Pandas库中,只需要读入数据,然后使用describe()函数就可以查看数据的基本情况。

import pandas as pd
catering_sale = '../data/catering_sale.xls' #餐饮数据
data = pd.read_excel(catering_sale, index_col = u'日期') #读取数据,指定“日期”列为索引列
data.describe()

运行结果如下。

销量
count   200.000000
mean   2755.214700
std     751.029772
min      22.000000
25%    2451.975000
50%    2655.850000
75%    3026.125000
max    9106.440000

其中count是非空值数,通过len(data)可以知道数据记录为201条,因此缺失值数为1。另外,提供的基本参数还有平均值(mean)、标准差(std)、最小值(min)、最大值(max)以及1/4、1/2、3/4分位数(25%、50%、75%)。更直观地展示这些数据,并且可以检测异常值的方法是使用箱线图。其Python检测代码如代码清单3-1所示。
image

运行上面的程序,其结果为“缺失值个数为:1”,同时可以得到如图3-2所示的箱型图。
从图3-2中可以看出,箱型图中的超过上下界的7个销售额数据可能为异常值。结合具体业务可以把865、4060.3、4065.2归为正常值,将22、51、60、6607.4、9106.44归为异常值。最后确定过滤规则为:日销量在400以下5000以上则属于异常数据,编写过滤程序,进行后续处理。

3.1.3 一致性分析

数据不一致性是指数据的矛盾性、不相容性。直接对不一致的数据进行挖掘,可能会产生与实际相违背的挖掘结果。
在数据挖掘过程中,不一致数据的产生主要发生在数据集成的过程中,这可能是由于被挖掘数据是来自于从不同的数据源、对于重复存放的数据未能进行一致性更新造成的。例如,两张表中都存储了用户的电话号码,但在用户的电话号码发生改变时只更新了一张表中的数据,那么这两张表中就有了不一致的数据。


f6f280df886246d60fefc1274d3540ab79836f04
相关文章
|
5天前
|
数据采集 数据可视化 数据挖掘
Python爬虫实战:抓取网站数据并生成报表
本文将介绍如何使用Python编写简单而高效的网络爬虫,从指定的网站上抓取数据,并利用数据分析库生成可视化报表。通过学习本文内容,读者将能够掌握基本的爬虫技术和数据处理方法,为日后开发更复杂的数据采集与分析工具打下坚实基础。
|
4天前
|
数据采集 数据可视化 数据挖掘
使用Python编写Web爬虫实现数据采集与分析
在当今信息化时代,数据是企业发展和决策的重要依据。本文将介绍如何使用Python编写Web爬虫来实现对特定网站数据的自动采集,并结合数据分析技术,为读者展示如何利用爬虫技术获取有价值的信息并进行有效的数据处理和分析。
|
5天前
|
人工智能 测试技术 开发者
Python 潮流周刊#15:如何分析 FastAPI 异步请求的性能?
Python 潮流周刊#15:如何分析 FastAPI 异步请求的性能?
47 2
|
5天前
|
数据可视化 Python
Python数据可视化利器Matplotlib实战教程
本文将介绍如何使用Python中强大的数据可视化工具Matplotlib,通过丰富的示例和实战操作,帮助读者快速掌握Matplotlib的基本用法和高级技巧,实现数据可视化的艺术。
|
4天前
|
数据采集 数据挖掘 Python
Python 爬虫实战
Python爬虫可以用于爬取淘宝商品数据,并对这些数据进行数据分析。下面是一个简单的示例,展示如何使用Python爬取淘宝商品数据并进行数据分析。
|
4天前
|
机器学习/深度学习 数据可视化 数据挖掘
Python在数据分析中的强大应用
【2月更文挑战第10天】 数据分析作为当今信息时代的重要技术手段,已经成为各行各业的核心竞争力所在。本文将深入探讨Python在数据分析领域的强大应用,从数据处理到可视化分析,展现了Python作为一种高效、灵活的编程语言在数据分析中的无限潜力。
|
1天前
|
数据可视化 数据挖掘 数据处理
Python在数据分析中的应用实践
【2月更文挑战第13天】 本文旨在探讨Python语言在当前数据驱动时代的核心应用之一——数据分析领域的实践方法和技术。Python,作为一种高级编程语言,因其简洁的语法、强大的库支持以及广泛的社区资源,已成为数据科学家和分析师首选的工具之一。文章首先简要介绍Python及其在数据分析中的优势,随后深入讲解使用Python进行数据处理、分析、可视化的关键技术,包括但不限于Pandas库的数据处理、Matplotlib和Seaborn库的数据可视化技术,以及SciPy和Scikit-learn库在数据分析中的应用。通过具体案例,展示Python如何有效地解决实际数据分析问题,最终旨在为读者提供一
10 2
|
1天前
|
数据采集 数据挖掘 大数据
Python在数据分析中的应用及实践
【2月更文挑战第13天】 本文旨在探讨Python语言在数据分析领域的广泛应用及其实践方法。通过深入浅出的方式,介绍Python在处理、分析大数据时的核心库和工具,如Pandas、NumPy、Matplotlib等,并通过一个实际案例来展示这些工具如何协同工作,解决数据分析中遇到的常见问题。文章不仅为读者提供了一个学习和应用Python进行数据分析的起点,也通过案例分析,展示了Python在数据处理能力上的强大与灵活性,旨在激发读者对Python数据分析深入学习和研究的兴趣。
|
1天前
|
数据采集 数据可视化 数据挖掘
浅谈Python在数据分析中的应用
在当前数据驱动的时代,Python已经成为数据分析不可或缺的工具之一。本文将探讨Python在数据分析领域的应用,特别是如何利用Python进行数据处理、分析以及可视化。我们将通过实际案例,展示Python强大的数据处理能力和灵活的数据分析功能,以及如何使用Python的各种库,如Pandas、NumPy、Matplotlib和Seaborn等,来简化数据分析流程,从而提高分析效率和质量。这篇文章旨在为初学者提供一个关于Python在数据分析中应用的全面介绍,帮助他们快速入门并应用于实际项目中。
|
1天前
|
数据采集 数据可视化 数据挖掘
深入浅出:使用Python进行数据分析与可视化
在信息爆炸的时代,数据已成为企业和研究机构不可或缺的宝贵资源。如何从海量数据中提取有价值的信息,是当下技术界面临的重大挑战之一。本文将引导读者深入了解如何利用Python语言,特别是其强大的数据处理库Pandas和可视化库Matplotlib,来进行有效的数据分析与结果呈现。我们将通过一个实际案例,展示从数据清洗到最终数据可视化的整个过程,使读者能够掌握将理论应用于实践的能力,进而在自己的工作和研究中发挥重要作用。