Python之建模规划篇--线性规划

简介: Python之建模规划篇--线性规划

基本介绍


在人们的生产实践中,经常会遇到如何利用现有资源来安排生产,以取得最大经济效益的问题。此类问题构成了运筹学的一个重要分支—数学规划,而线性规划(Linear Programming 简记LP)则是数学规划的一个重要分支。自从1947 年G. B. Dantzig 提出求解线性规划的单纯形方法以来,线性规划在理论上趋向成熟,在实用中日益广泛与深入。特别是在计算机能处理成千上万个约束条件和决策变量的线性规划问题之后,线性规划的适用领域更为广泛了,已成为现代管理中经常采用的基本方法之一。


线性规划的实例与定义


例1 某机床厂生产甲、乙两种机床,每台销售后的利润分别为4000 元与3000 元。生产甲机床需用 A、B机器加工,加工时间分别为每台 2 小时和 1 小时;生产乙机床需用 A、B、C三种机器加工,加工时间为每台各一小时。若每天可用于加工的机器时数分别为A 机器10 小时、B 机器8 小时和C 机器7 小时,问该厂应生产甲、乙机床各几台,才能使总利润最大?

上述问题的数学模型:设该厂生产x1 台甲机床和x2 乙机床时总利润最大,则 x1,x2应满足


202101211440195.png



这里变量x1, x2 称之为决策变量,(1)式被称为问题的目标函数,(2)中的几个不等式是问题的约束条件,记为s.t.(即subject to)。由于上面的目标函数及约束条件均为线性函数,故被称为线性规划问题。

总之,线性规划问题是在一组线性约束条件的限制下,求一线性目标函数最大或最小的问题。

在解决实际问题时,把问题归结成一个线性规划数学模型是很重要的一步,但往往也是困难的一步,模型建立得是否恰当,直接影响到求解。而选适当的决策变量,是我们建立有效模型的关键之一


线性规划问题的解的概念


20210121144232596.png

可行解 满足约束条件(4)的解 x=(x1 ,x2 ,… ,xn ) ,称为线性规划问题的可行解,而使目标函数(3)达到最大值的可行解叫最优解。

可行域 所有可行解构成的集合称为问题的可行域,记为R 。


20210121144429412.png

图解法简单直观,有助于了解线性规划问题求解的基本原理。我们先应用图解法来求解例1。对于每一固定的值z ,使目标函数值等于z 的点构成的直线称为目标函数等位线,当z 变动时,我们得到一族平行直线。对于例1,显然等位线越趋于右上方,其上的点具有越大的目标函数值。不难看出,本例的最优解为x* = (2,6)T ,最优目标值z* = 26。


求解线性规划的Matlab 解法


Matlab 中线性规划的标准型为


20210121144657859.png



基本函数形式为 linprog(c,A,b),它的返回值是向量x 的值。还有其它的一些函数调用形式(在 Matlab 指令窗运行 help linprog 可以看到所有的函数调用形式),如:

[x,fval]=linprog(c,A,b,Aeq,beq,LB,UB,X0,OPTIONS)

这里fval 返回目标函数的值,LB 和UB 分别是变量x 的下界和上界, x0 是x 的初始值,OPTIONS 是控制参数。


20210121144955254.png

现在给个例子


20210121145019205.png


20210121145058108.png

f=[-2; -3; 5];
a=[-2,5,-1;1,3,1]; b=[-10;12];
aeq=[1,1,1];
beq=7;
[x,y]=linprog(f,a,b,aeq,beq,zeros(3,1));
x, y=-y

执行后便可得到结果


20210121145156423.png



Python解法


Python Scipy库实现


同样的问题,我也可以用python实现

首先,我可以用Scipy库进行求解

大概的模板如下

# Scipy 库求解
from scipy import optimize
import numpy as np
res = 
optimize.linprog(c,A,b,Aeq,beq,LB,UB,X0,OPTIOS)
# 目标最小值
print(res.fun)
# 最优解
print(rea.x)

如果针对上面的那题,他的正确解法应该是

from scipy import optimize
import numpy as np
c = np.array([2,3,-5])
A = np.array([[-2,5,-1],[1,3,1]])
B = np.array([-10,12])
Aeq = np.array([[1,1,1]])
Beq = np.array([7])
res = optimize.linprog(-c,A,B,Aeq,Beq)
print(res)


会出现以下结果

20210121145504143.png

Python plup库实现


除此之外,还可以利用plup库求解

20210121145644893.png

# pulp库求解
import pulp
# 目标函数的系数
z = [2,3,1]
#约束
a = [[1,4,2],[3,2,0]]
b = [8, 6]
#确定最大化最小化问题,最大化只要把Min改成Max即可
m = pulp.LpProblem(sense=pulp.LpMinimize)
#定义三个变量放到列表中
x = [pulp.LpVariable(f'x{i}', lowBound=0) for i in [1,2,3]]
#定义目标函数,lpDot可以将两个列表的对应位相乘再加和
#相当于z[0]*x[0]+z[1]*x[1]+z[2]*x[2]
m += pulp.lpDot(z, x)
#设置约束条件
for i in range(len(a)):
    m += (pulp.lpDot(a[i], x) >= b[i])
#求解
m.solve()
#输出结果
print(f'优化结果:{pulp.value(m.objective)}')
print(f'参数取值:{[pulp.value(var) for var in x]}')

依然可以得到正确的结果

20210121145713133.png

一个十分有趣的例子


最后我看到了一个十分十分有趣的例子,是二维的线性规划问题,依旧用python实现

20210121145915260.png


import pulp
import numpy as np
from pprint import pprint
def transportation_problem(costs, x_max, y_max):
    row = len(costs)
    col = len(costs[0])
    prob = pulp.LpProblem('Transportation Problem',sense = pulp.LpMaximize)
    var = [[pulp.LpVariable(f'x{i}{j}', lowBound=0,cat=pulp.LpInteger) for j in range(col)] for i in range(row)]
    flatten = lambda x: [y for l in x for y in flatten(l)] if type(x) is list else [x]
    prob += pulp.lpDot(flatten(var), costs.flatten())
    for i in range(row):
        prob += (pulp.lpSum(var[i]) <= x_max[i])
    for j in range(col):
        prob += (pulp.lpSum([var[i][j] for i in range(row)]) <= y_max[j])
#     print(prob)
    prob.solve()
    return {'objective':pulp.value(prob.objective),'var':[[pulp.value(var[i][j])for j in range(col)]for i in range(row)]}
if __name__ == '__main__':
    costs = np.array([[500, 550, 630, 1000, 800, 700],
                        [800, 700, 600, 950, 900, 930],
                        [1000, 960, 840, 650, 600, 700],
                        [1200, 1040, 980, 860, 880, 780]])
    max_plant = [76, 88, 96, 40]
    max_cultivation = [42, 56, 44, 39, 60, 59]
    res = transportation_problem(costs, max_plant,
    max_cultivation)
    print(f'最大值为{res["objective"]}')
    print('各变量的取值为:')
    pprint(res['var'])


就这样,我们可以得到最优方案

20210121150018838.png

插一句,如果你把prob打印出来,你可以看到太他的内部是这样的


20210121150215500.png


每日一句

Giving is a reward in itself.(给予本身就是一个奖赏)


相关文章
|
3月前
|
机器学习/深度学习 算法 数据可视化
【BetterBench博士】2024年中国研究生数学建模竞赛 C题:数据驱动下磁性元件的磁芯损耗建模 问题分析、数学模型、python 代码
2024年中国研究生数学建模竞赛C题聚焦磁性元件磁芯损耗建模。题目背景介绍了电能变换技术的发展与应用,强调磁性元件在功率变换器中的重要性。磁芯损耗受多种因素影响,现有模型难以精确预测。题目要求通过数据分析建立高精度磁芯损耗模型。具体任务包括励磁波形分类、修正斯坦麦茨方程、分析影响因素、构建预测模型及优化设计条件。涉及数据预处理、特征提取、机器学习及优化算法等技术。适合电气、材料、计算机等多个专业学生参与。
1688 17
【BetterBench博士】2024年中国研究生数学建模竞赛 C题:数据驱动下磁性元件的磁芯损耗建模 问题分析、数学模型、python 代码
|
3月前
|
机器学习/深度学习 数据采集 算法
【BetterBench博士】2024华为杯C题:数据驱动下磁性元件的磁芯损耗建模 Python代码实现
本文介绍了2024年中国研究生数学建模竞赛C题的详细分析,涵盖数据预处理、特征提取、模型训练及评估等多个方面。通过对磁通密度数据的处理,提取关键特征并应用多种分类算法进行波形分类。此外,还探讨了斯坦麦茨方程及其温度修正模型的应用,分析了温度、励磁波形和磁芯材料对磁芯损耗的影响,并提出了优化磁芯损耗与传输磁能的方法。最后,提供了B站视频教程链接,供进一步学习参考。
168 6
【BetterBench博士】2024华为杯C题:数据驱动下磁性元件的磁芯损耗建模 Python代码实现
|
2月前
|
开发者 Python
Python类和子类的小示例:建模农场
Python类和子类的小示例:建模农场
14 0
|
4月前
|
数据建模 大数据 数据库
【2023年4月美赛加赛】Y题:Understanding Used Sailboat Prices 建模思路、建模方案、数据来源、相关资料、Python代码
本文提供了2023年MCM问题Y的解题思路、建模方案、数据来源、相关资料以及Python代码,旨在建立数学模型解释二手帆船的挂牌价格,并分析地区对价格的影响,以及在香港(SAR)市场上的应用。
48 1
【2023年4月美赛加赛】Y题:Understanding Used Sailboat Prices 建模思路、建模方案、数据来源、相关资料、Python代码
|
4月前
|
机器学习/深度学习 搜索推荐 数据可视化
【2023年第十一届泰迪杯数据挖掘挑战赛】C题:泰迪内推平台招聘与求职双向推荐系统构建 建模及python代码详解 问题二
本文介绍了2023年第十一届泰迪杯数据挖掘挑战赛C题的解决方案,重点讲解了如何构建招聘与求职双向推荐系统的建模过程和Python代码实现,并对招聘信息和求职者信息进行了详细分析和画像构建。
81 1
|
机器学习/深度学习 人工智能 算法
一文搞定深度学习建模预测全流程(Python)(下)
一文搞定深度学习建模预测全流程(Python)
|
机器学习/深度学习 数据采集 算法
一文搞定深度学习建模预测全流程(Python)(上)
​ 本文详细地梳理及实现了深度学习模型构建及预测的全流程,代码示例基于python及神经网络库keras,通过设计一个深度神经网络模型做波士顿房价回归预测。主要依赖的Python库有:keras、scikit-learn、pandas、tensorflow(建议可以安装下anaconda包,自带有常用的python库)
|
18天前
|
存储 数据挖掘 开发者
Python编程入门:从零到英雄
在这篇文章中,我们将一起踏上Python编程的奇幻之旅。无论你是编程新手,还是希望拓展技能的开发者,本教程都将为你提供一条清晰的道路,引导你从基础语法走向实际应用。通过精心设计的代码示例和练习,你将学会如何用Python解决实际问题,并准备好迎接更复杂的编程挑战。让我们一起探索这个强大的语言,开启你的编程生涯吧!
|
24天前
|
机器学习/深度学习 人工智能 TensorFlow
人工智能浪潮下的自我修养:从Python编程入门到深度学习实践
【10月更文挑战第39天】本文旨在为初学者提供一条清晰的道路,从Python基础语法的掌握到深度学习领域的探索。我们将通过简明扼要的语言和实际代码示例,引导读者逐步构建起对人工智能技术的理解和应用能力。文章不仅涵盖Python编程的基础,还将深入探讨深度学习的核心概念、工具和实战技巧,帮助读者在AI的浪潮中找到自己的位置。
|
24天前
|
机器学习/深度学习 数据挖掘 Python
Python编程入门——从零开始构建你的第一个程序
【10月更文挑战第39天】本文将带你走进Python的世界,通过简单易懂的语言和实际的代码示例,让你快速掌握Python的基础语法。无论你是编程新手还是想学习新语言的老手,这篇文章都能为你提供有价值的信息。我们将从变量、数据类型、控制结构等基本概念入手,逐步过渡到函数、模块等高级特性,最后通过一个综合示例来巩固所学知识。让我们一起开启Python编程之旅吧!