目标检测的Tricks | 【Trick1】Label Smoothing

简介: 目标检测的Tricks | 【Trick1】Label Smoothing

1. Label Smoothing理论概要


假设我们的分类只有两个,一个是猫一个不是猫,分别用1和0表示。Label Smoothing的工作原理是对原来的[0 1]这种标注做一个改动,假设我们给定Label Smoothing的平滑参数为0.1:

[0,1]×(1−0.1)+0.1/2=[0.05,0.95]


可以看到,原来的[0,1]标签成了[ 0.05 , 0.95 ] 了,那么就是说,原来分类准确的时候,p = 1,不准确为p = 0 。假设为Label Smoothing的平滑参数为ϵ,现在变成了: 分类准确的时候 p = 1 − 0.5 ∗ ϵ , 分类不准确时 p = 0.5 ∗ ϵ,也就是说对分类准确做了一点惩罚。


这实际上是一种正则化策略,减少了真实样本标签的类别在计算损失函数时的权重,最终起到抑制过拟合的效果。


2. Label Smoothing实现代码


YOLOv3-SPP中的代码:


def smooth_BCE(eps=0.1):  # https://github.com/ultralytics/yolov3/issues/238#issuecomment-598028441
    # return positive, negative label smoothing BCE targets
    return 1.0 - 0.5 * eps, 0.5 * eps
cp, cn = smooth_BCE(eps=0.0)
if model.nc > 1:  # cls loss (only if multiple classes)
    t = torch.full_like(ps[:, 5:], cn, device=device)  # targets
    t[range(nb), tcls[i]] = cp
    lcls += BCEcls(ps[:, 5:], t)  # BCE
目录
相关文章
|
4月前
|
机器学习/深度学习 算法 图形学
【论文泛读】NeRF: Representing Scenes as Neural Radiance Fields for View Synthesis
【论文泛读】NeRF: Representing Scenes as Neural Radiance Fields for View Synthesis
|
12月前
|
机器学习/深度学习 算法 数据可视化
深度学习论文阅读目标检测篇(一):R-CNN《Rich feature hierarchies for accurate object detection and semantic...》
 过去几年,在经典数据集PASCAL上,物体检测的效果已经达到 一个稳定水平。效果最好的方法是融合了多种低维图像特征和高维上 下文环境的复杂集成系统。在这篇论文里,我们提出了一种简单并且 可扩展的检测算法,可以在VOC2012最好结果的基础上将mAP值提 高30%以上——达到了53.3%。
123 0
深度学习论文阅读目标检测篇(一):R-CNN《Rich feature hierarchies for accurate object detection and semantic...》
|
9月前
|
机器学习/深度学习 编解码 数据可视化
NeRF系列(1):NeRF: Representing Scenes as Neural Radiance Fields for View Synthesis 论文解读与公式推导(二)
NeRF系列(1):NeRF: Representing Scenes as Neural Radiance Fields for View Synthesis 论文解读与公式推导(二)
126 0
|
9月前
|
机器学习/深度学习 存储 编解码
NeRF系列(1):NeRF: Representing Scenes as Neural Radiance Fields for View Synthesis 论文解读与公式推导(一)
NeRF系列(1):NeRF: Representing Scenes as Neural Radiance Fields for View Synthesis 论文解读与公式推导
98 0
|
9月前
|
机器学习/深度学习 数据可视化 TensorFlow
NeRF系列(2):NeRF in the wild : Neural Radiance Fields for Unconstrained Photo Collections论文解读与公式推导
NeRF系列(2):NeRF in the wild : Neural Radiance Fields for Unconstrained Photo Collections论文解读与公式推导
233 0
|
12月前
|
机器学习/深度学习 人工智能 算法
CVPR‘2023 | Cross-modal Adaptation: 基于 CLIP 的微调新范式
CVPR‘2023 | Cross-modal Adaptation: 基于 CLIP 的微调新范式
474 0
|
12月前
|
机器学习/深度学习 传感器 自然语言处理
论文笔记:SpectralFormer Rethinking Hyperspectral Image Classification With Transformers_外文翻译
 高光谱(HS)图像具有近似连续的光谱信息,能够通过捕获细微的光谱差异来精确识别物质。卷积神经网络(CNNs)由于具有良好的局部上下文建模能力,在HS图像分类中是一种强有力的特征提取器。然而,由于其固有的网络骨干网的限制,CNN不能很好地挖掘和表示谱特征的序列属性。
111 0
|
机器学习/深度学习 存储 数据挖掘
【文本分类】Bag of Tricks for Efficient Text Classification
【文本分类】Bag of Tricks for Efficient Text Classification
【文本分类】Bag of Tricks for Efficient Text Classification
|
存储 计算机视觉 索引
目标检测的Tricks | 【Trick11】label的缩放与显示
目标检测的Tricks | 【Trick11】label的缩放与显示
102 0
目标检测的Tricks | 【Trick11】label的缩放与显示
|
编解码 PyTorch 算法框架/工具
YOLOv5的Tricks | 【Trick3】Test Time Augmentation(TTA)
一句话简单的介绍Test Time Augmentation(TTA)就是测试过程中也使用数据增强,官方教程介绍:Test-Time Augmentation (TTA) Tutorial
416 0