【25】模型参数量Params与计算量Flops的计算方法

简介: 【25】模型参数量Params与计算量Flops的计算方法

1. 推导公式


1.1 CNN Params

image.png


1.2 CNN Flops

image.png


1.3 Linear Params

image.png


1.4 Linear Flops

image.png


2. 计算方法


2.1 parameters法

通过遍历模型的parameters获取结构以及参数:

model = 你自己的模型,eg:CNN()  ResNet()  SegNet()....
    params = list(model.parameters())
    k = 0
    for i in params:
        l = 1
        print("该层的结构:" + str(list(i.size())))
        for j in i.size():
            l *= j
        print("该层参数和:" + str(l))
        k = k + l
    print("总参数数量和:" + str(k))

 

效果如下:

image.png


2.2 thop法

thop是一个库,可以通过pip install thop进行安装,安装后通过里面的profile可以获取参数量params以及计算量flops

from thop import profile
model = 自己的模型实例化
flops, params = profile(model, inputs=传入模型的输入shape,这个必须要填)


以resnet18进行测试:

import torch
from torchvision.models import resnet18
from thop import profile
model = resnet18()
input = torch.randn(1, 3, 128, 128)
flops, params = profile(model, inputs=(input, ))
print('flops:{}'.format(flops))
print('params:{}'.format(params))

image.png


2.3 torchstat法

还是一样,没有的先pip install torchstat即可,还是以restnet18为例:

from torchstat import stat
from torchvision.models import resnet18
model = resnet18()
stat(model, (3, 224, 224))


输出:

[MAdd]: AdaptiveAvgPool2d is not supported!
[Flops]: AdaptiveAvgPool2d is not supported!
[Memory]: AdaptiveAvgPool2d is not supported!
                 module name  input shape output shape      params memory(MB)             MAdd            Flops  MemRead(B)  MemWrite(B) duration[%]    MemR+W(B)
0                      conv1    3 224 224   64 112 112      9408.0       3.06    235,225,088.0    118,013,952.0    639744.0    3211264.0       6.25%    3851008.0
1                        bn1   64 112 112   64 112 112       128.0       3.06      3,211,264.0      1,605,632.0   3211776.0    3211264.0       1.09%    6423040.0
2                       relu   64 112 112   64 112 112         0.0       3.06        802,816.0        802,816.0   3211264.0    3211264.0       0.28%    6422528.0
3                    maxpool   64 112 112   64  56  56         0.0       0.77      1,605,632.0        802,816.0   3211264.0     802816.0       5.61%    4014080.0
4             layer1.0.conv1   64  56  56   64  56  56     36864.0       0.77    231,010,304.0    115,605,504.0    950272.0     802816.0       4.61%    1753088.0
5               layer1.0.bn1   64  56  56   64  56  56       128.0       0.77        802,816.0        401,408.0    803328.0     802816.0       0.25%    1606144.0
6              layer1.0.relu   64  56  56   64  56  56         0.0       0.77        200,704.0        200,704.0    802816.0     802816.0       0.09%    1605632.0
7             layer1.0.conv2   64  56  56   64  56  56     36864.0       0.77    231,010,304.0    115,605,504.0    950272.0     802816.0       3.72%    1753088.0
8               layer1.0.bn2   64  56  56   64  56  56       128.0       0.77        802,816.0        401,408.0    803328.0     802816.0       0.21%    1606144.0
9             layer1.1.conv1   64  56  56   64  56  56     36864.0       0.77    231,010,304.0    115,605,504.0    950272.0     802816.0       3.63%    1753088.0
10              layer1.1.bn1   64  56  56   64  56  56       128.0       0.77        802,816.0        401,408.0    803328.0     802816.0       0.20%    1606144.0
11             layer1.1.relu   64  56  56   64  56  56         0.0       0.77        200,704.0        200,704.0    802816.0     802816.0       0.09%    1605632.0
12            layer1.1.conv2   64  56  56   64  56  56     36864.0       0.77    231,010,304.0    115,605,504.0    950272.0     802816.0       3.68%    1753088.0
13              layer1.1.bn2   64  56  56   64  56  56       128.0       0.77        802,816.0        401,408.0    803328.0     802816.0       0.20%    1606144.0
14            layer2.0.conv1   64  56  56  128  28  28     73728.0       0.38    115,505,152.0     57,802,752.0   1097728.0     401408.0       3.13%    1499136.0
15              layer2.0.bn1  128  28  28  128  28  28       256.0       0.38        401,408.0        200,704.0    402432.0     401408.0       0.19%     803840.0
16             layer2.0.relu  128  28  28  128  28  28         0.0       0.38        100,352.0        100,352.0    401408.0     401408.0       0.07%     802816.0
17            layer2.0.conv2  128  28  28  128  28  28    147456.0       0.38    231,110,656.0    115,605,504.0    991232.0     401408.0       4.24%    1392640.0
18              layer2.0.bn2  128  28  28  128  28  28       256.0       0.38        401,408.0        200,704.0    402432.0     401408.0       0.19%     803840.0
19     layer2.0.downsample.0   64  56  56  128  28  28      8192.0       0.38     12,744,704.0      6,422,528.0    835584.0     401408.0       1.59%    1236992.0
20     layer2.0.downsample.1  128  28  28  128  28  28       256.0       0.38        401,408.0        200,704.0    402432.0     401408.0       0.22%     803840.0
21            layer2.1.conv1  128  28  28  128  28  28    147456.0       0.38    231,110,656.0    115,605,504.0    991232.0     401408.0       3.54%    1392640.0
22              layer2.1.bn1  128  28  28  128  28  28       256.0       0.38        401,408.0        200,704.0    402432.0     401408.0       0.19%     803840.0
23             layer2.1.relu  128  28  28  128  28  28         0.0       0.38        100,352.0        100,352.0    401408.0     401408.0       0.07%     802816.0
24            layer2.1.conv2  128  28  28  128  28  28    147456.0       0.38    231,110,656.0    115,605,504.0    991232.0     401408.0       3.50%    1392640.0
25              layer2.1.bn2  128  28  28  128  28  28       256.0       0.38        401,408.0        200,704.0    402432.0     401408.0       0.17%     803840.0
26            layer3.0.conv1  128  28  28  256  14  14    294912.0       0.19    115,555,328.0     57,802,752.0   1581056.0     200704.0       3.33%    1781760.0
27              layer3.0.bn1  256  14  14  256  14  14       512.0       0.19        200,704.0        100,352.0    202752.0     200704.0       0.17%     403456.0
28             layer3.0.relu  256  14  14  256  14  14         0.0       0.19         50,176.0         50,176.0    200704.0     200704.0       0.08%     401408.0
29            layer3.0.conv2  256  14  14  256  14  14    589824.0       0.19    231,160,832.0    115,605,504.0   2560000.0     200704.0       5.48%    2760704.0
30              layer3.0.bn2  256  14  14  256  14  14       512.0       0.19        200,704.0        100,352.0    202752.0     200704.0       0.21%     403456.0
31     layer3.0.downsample.0  128  28  28  256  14  14     32768.0       0.19     12,794,880.0      6,422,528.0    532480.0     200704.0       1.37%     733184.0
32     layer3.0.downsample.1  256  14  14  256  14  14       512.0       0.19        200,704.0        100,352.0    202752.0     200704.0       0.17%     403456.0
33            layer3.1.conv1  256  14  14  256  14  14    589824.0       0.19    231,160,832.0    115,605,504.0   2560000.0     200704.0       4.35%    2760704.0
34              layer3.1.bn1  256  14  14  256  14  14       512.0       0.19        200,704.0        100,352.0    202752.0     200704.0       0.17%     403456.0
35             layer3.1.relu  256  14  14  256  14  14         0.0       0.19         50,176.0         50,176.0    200704.0     200704.0       0.08%     401408.0
36            layer3.1.conv2  256  14  14  256  14  14    589824.0       0.19    231,160,832.0    115,605,504.0   2560000.0     200704.0       3.91%    2760704.0
37              layer3.1.bn2  256  14  14  256  14  14       512.0       0.19        200,704.0        100,352.0    202752.0     200704.0       0.17%     403456.0
38            layer4.0.conv1  256  14  14  512   7   7   1179648.0       0.10    115,580,416.0     57,802,752.0   4919296.0     100352.0       5.84%    5019648.0
39              layer4.0.bn1  512   7   7  512   7   7      1024.0       0.10        100,352.0         50,176.0    104448.0     100352.0       0.21%     204800.0
40             layer4.0.relu  512   7   7  512   7   7         0.0       0.10         25,088.0         25,088.0    100352.0     100352.0       0.09%     200704.0
41            layer4.0.conv2  512   7   7  512   7   7   2359296.0       0.10    231,185,920.0    115,605,504.0   9537536.0     100352.0       9.87%    9637888.0
42              layer4.0.bn2  512   7   7  512   7   7      1024.0       0.10        100,352.0         50,176.0    104448.0     100352.0       0.25%     204800.0
43     layer4.0.downsample.0  256  14  14  512   7   7    131072.0       0.10     12,819,968.0      6,422,528.0    724992.0     100352.0       1.76%     825344.0
44     layer4.0.downsample.1  512   7   7  512   7   7      1024.0       0.10        100,352.0         50,176.0    104448.0     100352.0       0.18%     204800.0
45            layer4.1.conv1  512   7   7  512   7   7   2359296.0       0.10    231,185,920.0    115,605,504.0   9537536.0     100352.0       7.26%    9637888.0
46              layer4.1.bn1  512   7   7  512   7   7      1024.0       0.10        100,352.0         50,176.0    104448.0     100352.0       0.23%     204800.0
47             layer4.1.relu  512   7   7  512   7   7         0.0       0.10         25,088.0         25,088.0    100352.0     100352.0       0.08%     200704.0
48            layer4.1.conv2  512   7   7  512   7   7   2359296.0       0.10    231,185,920.0    115,605,504.0   9537536.0     100352.0       6.57%    9637888.0
49              layer4.1.bn2  512   7   7  512   7   7      1024.0       0.10        100,352.0         50,176.0    104448.0     100352.0       0.23%     204800.0
50                   avgpool  512   7   7  512   1   1         0.0       0.00              0.0              0.0         0.0          0.0       0.25%          0.0
51                        fc          512         1000    513000.0       0.00      1,023,000.0        512,000.0   2054048.0       4000.0       0.71%    2058048.0
total                                                   11689512.0      25.65  3,638,757,912.0  1,821,399,040.0   2054048.0       4000.0     100.00%  101756992.0
=================================================================================================================================================================
Total params: 11,689,512
-----------------------------------------------------------------------------------------------------------------------------------------------------------------
Total memory: 25.65MB
Total MAdd: 3.64GMAdd
Total Flops: 1.82GFlops
Total MemR+W: 97.04MB
Process finished with exit code 0


弊端:shape只能是3维的

assert isinstance(input_size, (tuple, list)) and len(input_size) == 3


2.4 torchsummary法

还是一样,用pip install torchsummay进行安装,通过下方例子进行调用。

from torchsummary import summary
model = resnet18()
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
summary(model.to(device), input_size=(3, 224, 224), batch_size=8)


输出:

----------------------------------------------------------------
        Layer (type)               Output Shape         Param #
================================================================
            Conv2d-1          [8, 64, 112, 112]           9,408
       BatchNorm2d-2          [8, 64, 112, 112]             128
              ReLU-3          [8, 64, 112, 112]               0
         MaxPool2d-4            [8, 64, 56, 56]               0
            Conv2d-5            [8, 64, 56, 56]          36,864
       BatchNorm2d-6            [8, 64, 56, 56]             128
              ReLU-7            [8, 64, 56, 56]               0
            Conv2d-8            [8, 64, 56, 56]          36,864
       BatchNorm2d-9            [8, 64, 56, 56]             128
             ReLU-10            [8, 64, 56, 56]               0
       BasicBlock-11            [8, 64, 56, 56]               0
           Conv2d-12            [8, 64, 56, 56]          36,864
      BatchNorm2d-13            [8, 64, 56, 56]             128
             ReLU-14            [8, 64, 56, 56]               0
           Conv2d-15            [8, 64, 56, 56]          36,864
      BatchNorm2d-16            [8, 64, 56, 56]             128
             ReLU-17            [8, 64, 56, 56]               0
       BasicBlock-18            [8, 64, 56, 56]               0
           Conv2d-19           [8, 128, 28, 28]          73,728
      BatchNorm2d-20           [8, 128, 28, 28]             256
             ReLU-21           [8, 128, 28, 28]               0
           Conv2d-22           [8, 128, 28, 28]         147,456
      BatchNorm2d-23           [8, 128, 28, 28]             256
           Conv2d-24           [8, 128, 28, 28]           8,192
      BatchNorm2d-25           [8, 128, 28, 28]             256
             ReLU-26           [8, 128, 28, 28]               0
       BasicBlock-27           [8, 128, 28, 28]               0
           Conv2d-28           [8, 128, 28, 28]         147,456
      BatchNorm2d-29           [8, 128, 28, 28]             256
             ReLU-30           [8, 128, 28, 28]               0
           Conv2d-31           [8, 128, 28, 28]         147,456
      BatchNorm2d-32           [8, 128, 28, 28]             256
             ReLU-33           [8, 128, 28, 28]               0
       BasicBlock-34           [8, 128, 28, 28]               0
           Conv2d-35           [8, 256, 14, 14]         294,912
      BatchNorm2d-36           [8, 256, 14, 14]             512
             ReLU-37           [8, 256, 14, 14]               0
           Conv2d-38           [8, 256, 14, 14]         589,824
      BatchNorm2d-39           [8, 256, 14, 14]             512
           Conv2d-40           [8, 256, 14, 14]          32,768
      BatchNorm2d-41           [8, 256, 14, 14]             512
             ReLU-42           [8, 256, 14, 14]               0
       BasicBlock-43           [8, 256, 14, 14]               0
           Conv2d-44           [8, 256, 14, 14]         589,824
      BatchNorm2d-45           [8, 256, 14, 14]             512
             ReLU-46           [8, 256, 14, 14]               0
           Conv2d-47           [8, 256, 14, 14]         589,824
      BatchNorm2d-48           [8, 256, 14, 14]             512
             ReLU-49           [8, 256, 14, 14]               0
       BasicBlock-50           [8, 256, 14, 14]               0
           Conv2d-51             [8, 512, 7, 7]       1,179,648
      BatchNorm2d-52             [8, 512, 7, 7]           1,024
             ReLU-53             [8, 512, 7, 7]               0
           Conv2d-54             [8, 512, 7, 7]       2,359,296
      BatchNorm2d-55             [8, 512, 7, 7]           1,024
           Conv2d-56             [8, 512, 7, 7]         131,072
      BatchNorm2d-57             [8, 512, 7, 7]           1,024
             ReLU-58             [8, 512, 7, 7]               0
       BasicBlock-59             [8, 512, 7, 7]               0
           Conv2d-60             [8, 512, 7, 7]       2,359,296
      BatchNorm2d-61             [8, 512, 7, 7]           1,024
             ReLU-62             [8, 512, 7, 7]               0
           Conv2d-63             [8, 512, 7, 7]       2,359,296
      BatchNorm2d-64             [8, 512, 7, 7]           1,024
             ReLU-65             [8, 512, 7, 7]               0
       BasicBlock-66             [8, 512, 7, 7]               0
AdaptiveAvgPool2d-67             [8, 512, 1, 1]               0
           Linear-68                  [8, 1000]         513,000
================================================================
Total params: 11,689,512
Trainable params: 11,689,512
Non-trainable params: 0
----------------------------------------------------------------
Input size (MB): 4.59
Forward/backward pass size (MB): 502.34
Params size (MB): 44.59
Estimated Total Size (MB): 551.53
----------------------------------------------------------------
Process finished with exit code 0


弊端:需要比较大的显存空间才能使用


综上:我觉得thop方法比较好用


参考链接:


https://blog.csdn.net/qq_41573860/article/details/116767639

https://www.jianshu.com/p/d4db25322435


目录
相关文章
|
6天前
|
PyTorch 算法框架/工具 计算机视觉
用thop去获得模型参数量和计算量(pytorch)
用thop去获得模型参数量和计算量(pytorch)
164 2
|
6天前
|
机器学习/深度学习 监控 Python
tensorflow2.x多层感知机模型参数量和计算量的统计
tensorflow2.x多层感知机模型参数量和计算量的统计
|
7月前
土方量的几种计算方法
土方量的几种计算方法
208 1
交流电路理论:峰值、平均值和RMS值的计算公式
除了频率和周期之外,AC 波形的一个关键属性是振幅,它表示交变波形的最大值,或者更广为人知的是峰值。
3081 0
交流电路理论:峰值、平均值和RMS值的计算公式
|
6天前
|
机器学习/深度学习 人工智能 移动开发
一文搞懂 FFN / RNN / CNN 的参数量计算公式 !!
一文搞懂 FFN / RNN / CNN 的参数量计算公式 !!
12 3
|
6天前
|
存储 机器学习/深度学习 自然语言处理
ICLR 2024:零成本增加模型容量:一种简单的低参数量微调策略
【2月更文挑战第23天】ICLR 2024:零成本增加模型容量:一种简单的低参数量微调策略
28 2
ICLR 2024:零成本增加模型容量:一种简单的低参数量微调策略
|
6天前
|
机器学习/深度学习
YOLOv5改进 | Conv篇 | 利用轻量化PartialConv提出一种全新的结构CSPPC (参数量下降约42W)
YOLOv5改进 | Conv篇 | 利用轻量化PartialConv提出一种全新的结构CSPPC (参数量下降约42W)
144 4
|
6天前
|
机器学习/深度学习
YOLOv8改进 | Conv篇 | 利用轻量化PartialConv提出一种全新的结构CSPPC (参数量下降约100W)
YOLOv8改进 | Conv篇 | 利用轻量化PartialConv提出一种全新的结构CSPPC (参数量下降约100W)
380 0
|
6天前
|
机器学习/深度学习 TensorFlow 定位技术
神经网络学习率指数衰减ExponentialDecay策略的参数含义与使用方法详解
神经网络学习率指数衰减ExponentialDecay策略的参数含义与使用方法详解
|
11月前
应用torchinfo计算网络的参数量
应用torchinfo计算网络的参数量
113 0