机器学习原理与实战 | SVM(支持向量机)实践

简介: 机器学习原理与实战 | SVM(支持向量机)实践
%matplotlib inline
import matplotlib.pyplot as plt
import numpy as np


1. 二维SVM分类例子


from sklearn.datasets import make_blobs
X, y = make_blobs(n_samples=100, centers=2,  
                  random_state=0, cluster_std=0.3)
X.shape, y.shape
((100, 2), (100,))

显示数据

plt.figure(figsize=(12, 4), dpi=144)
plt.scatter(X[:,0],X[:,1])
<matplotlib.collections.PathCollection at 0x18f06d80d08>

image.png

def plot_hyperplane(clf, X, y, 
                    h=0.02, 
                    draw_sv=True, 
                    title='hyperplan'):
    # create a mesh to plot in
    x_min, x_max = X[:, 0].min() - 1, X[:, 0].max() + 1
    y_min, y_max = X[:, 1].min() - 1, X[:, 1].max() + 1
    xx, yy = np.meshgrid(np.arange(x_min, x_max, h),
                         np.arange(y_min, y_max, h))
    plt.title(title)
    plt.xlim(xx.min(), xx.max())
    plt.ylim(yy.min(), yy.max())
    plt.xticks(())
    plt.yticks(())
    Z = clf.predict(np.c_[xx.ravel(), yy.ravel()])
    # Put the result into a color plot
    Z = Z.reshape(xx.shape)
    plt.contourf(xx, yy, Z, cmap='hot', alpha=0.5)
    markers = ['o', 's', '^']
    colors = ['b', 'r', 'c']
    labels = np.unique(y)
    for label in labels:
        plt.scatter(X[y==label][:, 0], 
                    X[y==label][:, 1], 
                    c=colors[label], 
                    marker=markers[label])
    if draw_sv:
        sv = clf.support_vectors_
        plt.scatter(sv[:, 0], sv[:, 1], c='y', marker='x')
from sklearn import svm
from sklearn.datasets import make_blobs
X, y = make_blobs(n_samples=100, centers=2, 
                  random_state=0, cluster_std=0.3)
clf = svm.SVC(C=1.0, kernel='linear')
clf.fit(X, y)
plt.figure(figsize=(12, 4), dpi=144)
plot_hyperplane(clf, X, y, h=0.01, 
                title='Maximum Margin Hyperplan')

image.png

from sklearn import svm
from sklearn.datasets import make_blobs
X, y = make_blobs(n_samples=100, centers=3, 
                  random_state=0, cluster_std=0.8)
# 线性函数
clf_linear = svm.SVC(C=1.0, kernel='linear')
# 多项式核函数(3阶)
clf_poly = svm.SVC(C=1.0, kernel='poly', degree=3)
# 高斯核函数
clf_rbf = svm.SVC(C=1.0, kernel='rbf', gamma=0.5)
clf_rbf2 = svm.SVC(C=1.0, kernel='rbf', gamma=0.2)
plt.figure(figsize=(8, 5), dpi=100)
clfs = [clf_linear, clf_poly, clf_rbf, clf_rbf2]
titles = ['Linear Kernel', 
          'Polynomial Kernel with Degree=3', 
          'Gaussian Kernel with $\gamma=0.5$', 
          'Gaussian Kernel with $\gamma=0.1$']
for clf, i in zip(clfs, range(len(clfs))):
    clf.fit(X, y)
    plt.subplot(2, 2, i+1)
    plot_hyperplane(clf, X, y, title=titles[i])

image.png

思考:左下角gamma=0.5的高斯核函数的图片,带有x标记的点是支持向量。我们之前介绍过,离分隔超平面最近的点是支持向量,为什么很多离分隔超平面很远的点,也是支持向量呢?

原因是高斯核函数把输入特征向量映射到了无限维的向量空间里,在映射后的高维向量空间里,这些点其实是离分隔超平面最近的点。当回到二维向量空间中时,这些点“看起来”就不像是距离分隔超平面最近的点了,但实际上它们就是支持向量。


2. 多维SVM分类例子


%matplotlib inline
import matplotlib.pyplot as plt
import numpy as np
# 载入数据
from sklearn.datasets import load_breast_cancer
cancer = load_breast_cancer()
X = cancer.data
y = cancer.target
print('data shape: {0}; no. positive: {1}; no. negative: {2}'.format(
    X.shape, y[y==1].shape[0], y[y==0].shape[0]))
data shape: (569, 30); no. positive: 357; no. negative: 212

切分数据集

from sklearn.model_selection import train_test_split
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2)


2.1 高斯核函数

from sklearn.svm import SVC
clf = SVC(C=1.0, kernel='rbf', gamma=0.0001)
clf.fit(X_train, y_train)
train_score = clf.score(X_train, y_train)
test_score = clf.score(X_test, y_test)
print('train score: {0}; test score: {1}'.format(train_score, test_score))
train score: 0.9406593406593406; test score: 0.9649122807017544

可以使用前面介绍过的GridSearchCV来自动选择最优参数

from sklearn.model_selection import GridSearchCV
gammas = np.linspace(0, 0.0003, 30)
param_grid = {'gamma': gammas}
clf = GridSearchCV(SVC(), param_grid, cv=5)
clf.fit(X, y)
print("best param: {0}\nbest score: {1}".format(clf.best_params_,
                                                clf.best_score_))
# plt.figure(figsize=(10, 4), dpi=144)
# plot_param_curve(plt, gammas, clf.cv_results_, xlabel='gamma');
best param: {'gamma': 0.00011379310344827585}
best score: 0.9367334264865704
best param: {'gamma': 0.00011379310344827585}
best score: 0.9367334264865704
import time
from common.utils import plot_learning_curve
from sklearn.model_selection import ShuffleSplit
cv = ShuffleSplit(n_splits=10, test_size=0.2, random_state=0)
title = 'Learning Curves for Gaussian Kernel'
start = time.clock()
plt.figure(figsize=(10, 4), dpi=144)
plot_learning_curve(plt, SVC(C=1.0, kernel='rbf', gamma=0.01),
                    title, X, y, ylim=(0.5, 1.01), cv=cv)
print('elaspe: {0:.6f}'.format(time.clock()-start))
<Figure size 1440x576 with 0 Axes>
<module 'matplotlib.pyplot' from '/Users/kamidox/work/books/ml-scikit-learn/code/.venv/lib/python3.6/site-packages/matplotlib/pyplot.py'>
elaspe: 0.582505

image.png

2.2. 多项式核函数

from sklearn.svm import SVC
clf = SVC(C=1.0, kernel='poly', degree=2)
clf.fit(X_train, y_train)
train_score = clf.score(X_train, y_train)
test_score = clf.score(X_test, y_test)
print('train score: {0}; test score: {1}'.format(train_score, test_score))
/Users/kamidox/work/books/ml-scikit-learn/code/.venv/lib/python3.6/site-packages/sklearn/svm/base.py:196: FutureWarning: The default value of gamma will change from 'auto' to 'scale' in version 0.22 to account better for unscaled features. Set gamma explicitly to 'auto' or 'scale' to avoid this warning.
  "avoid this warning.", FutureWarning)
SVC(C=1.0, cache_size=200, class_weight=None, coef0=0.0,
  decision_function_shape='ovr', degree=2, gamma='auto_deprecated',
  kernel='poly', max_iter=-1, probability=False, random_state=None,
  shrinking=True, tol=0.001, verbose=False)
train score: 0.9802197802197802; test score: 0.9736842105263158
import time
from common.utils import plot_learning_curve
from sklearn.model_selection import ShuffleSplit
cv = ShuffleSplit(n_splits=5, test_size=0.2, random_state=0)
title = 'Learning Curves with degree={0}'
degrees = [1, 2]
start = time.clock()
plt.figure(figsize=(12, 4), dpi=144)
for i in range(len(degrees)):
    plt.subplot(1, len(degrees), i + 1)
    plot_learning_curve(plt, SVC(C=1.0, kernel='poly', degree=degrees[i]),
                        title.format(degrees[i]), X, y, ylim=(0.8, 1.01), cv=cv, n_jobs=4)
print('elaspe: {0:.6f}'.format(time.clock()-start))
import time
from common.utils import plot_learning_curve
from sklearn.model_selection import ShuffleSplit
cv = ShuffleSplit(n_splits=5, test_size=0.2, random_state=0)
title = 'Learning Curves with degree={0}'
degrees = [1, 2]
start = time.clock()
plt.figure(figsize=(12, 4), dpi=144)
for i in range(len(degrees)):
    plt.subplot(1, len(degrees), i + 1)
    plot_learning_curve(plt, SVC(C=1.0, kernel='poly', degree=degrees[i]),
                        title.format(degrees[i]), X, y, ylim=(0.8, 1.01), cv=cv, n_jobs=4)
print('elaspe: {0:.6f}'.format(time.clock()-start))

image.png

2.3 多项式 LinearSVC

from sklearn.svm import LinearSVC
from sklearn.preprocessing import PolynomialFeatures
from sklearn.preprocessing import MinMaxScaler
from sklearn.pipeline import Pipeline
def create_model(degree=2, **kwarg):
    polynomial_features = PolynomialFeatures(degree=degree,
                                             include_bias=False)
    scaler = MinMaxScaler()
    linear_svc = LinearSVC(**kwarg)
    pipeline = Pipeline([("polynomial_features", polynomial_features),
                         ("scaler", scaler),
                         ("linear_svc", linear_svc)])
    return pipeline
clf = create_model(penalty='l1', dual=False)
clf.fit(X_train, y_train)
train_score = clf.score(X_train, y_train)
test_score = clf.score(X_test, y_test)
print('train score: {0}; test score: {1}'.format(train_score, test_score))
/Users/kamidox/work/books/ml-scikit-learn/code/.venv/lib/python3.6/site-packages/sklearn/svm/base.py:922: ConvergenceWarning: Liblinear failed to converge, increase the number of iterations.
  "the number of iterations.", ConvergenceWarning)
Pipeline(memory=None,
     steps=[('polynomial_features', PolynomialFeatures(degree=2, include_bias=False, interaction_only=False)), ('scaler', MinMaxScaler(copy=True, feature_range=(0, 1))), ('linear_svc', LinearSVC(C=1.0, class_weight=None, dual=False, fit_intercept=True,
     intercept_scaling=1, loss='squared_hinge', max_iter=1000,
     multi_class='ovr', penalty='l1', random_state=None, tol=0.0001,
     verbose=0))])
train score: 0.9824175824175824; test score: 0.9912280701754386
import time
from common.utils import plot_learning_curve
from sklearn.model_selection import ShuffleSplit
cv = ShuffleSplit(n_splits=5, test_size=0.2, random_state=0)
title = 'Learning Curves for LinearSVC with Degree={0}'
degrees = [1, 2]
start = time.clock()
plt.figure(figsize=(12, 4), dpi=144)
for i in range(len(degrees)):
    plt.subplot(1, len(degrees), i + 1)
    plot_learning_curve(plt, create_model(penalty='l1', dual=False, degree=degrees[i]),
                        title.format(degrees[i]), X, y, ylim=(0.8, 1.01), cv=cv)
print('elaspe: {0:.6f}'.format(time.clock()-start))
<Figure size 1728x576 with 0 Axes>
elaspe: 4.053868

image.png

目录
相关文章
|
6月前
|
机器学习/深度学习 人工智能 算法
探索机器学习中的支持向量机(SVM)算法
【5月更文挑战第27天】在数据科学和人工智能的领域中,支持向量机(SVM)是一种强大的监督学习模型,它基于统计学习理论中的VC维理论和结构风险最小化原理。本文将详细介绍SVM的工作原理、核心概念以及如何在实际问题中应用该算法进行分类和回归分析。我们还将讨论SVM面临的挑战以及如何通过调整参数和核技巧来优化模型性能。
|
3月前
|
机器学习/深度学习 算法
【机器学习】SVM面试题:简单介绍一下SVM?支持向量机SVM、逻辑回归LR、决策树DT的直观对比和理论对比,该如何选择?SVM为什么采用间隔最大化?为什么要将求解SVM的原始问题转换为其对偶问题?
支持向量机(SVM)的介绍,包括其基本概念、与逻辑回归(LR)和决策树(DT)的直观和理论对比,如何选择这些算法,SVM为何采用间隔最大化,求解SVM时为何转换为对偶问题,核函数的引入原因,以及SVM对缺失数据的敏感性。
71 3
|
3月前
|
机器学习/深度学习 运维 算法
深入探索机器学习中的支持向量机(SVM)算法:原理、应用与Python代码示例全面解析
【8月更文挑战第6天】在机器学习领域,支持向量机(SVM)犹如璀璨明珠。它是一种强大的监督学习算法,在分类、回归及异常检测中表现出色。SVM通过在高维空间寻找最大间隔超平面来分隔不同类别的数据,提升模型泛化能力。为处理非线性问题,引入了核函数将数据映射到高维空间。SVM在文本分类、图像识别等多个领域有广泛应用,展现出高度灵活性和适应性。
139 2
|
3月前
|
机器学习/深度学习 算法
【机器学习】解释对偶的概念及SVM中的对偶算法?(面试回答)
解释了对偶的概念,指出对偶性在优化问题中的重要性,尤其是在强对偶性成立时可以提供主问题的最优下界,并且详细阐述了支持向量机(SVM)中对偶算法的应用,包括如何将原始的最大间隔优化问题转换为对偶问题来求解。
76 2
|
3月前
|
机器学习/深度学习 算法
【机器学习】支持向量机SVM、逻辑回归LR、决策树DT的直观对比和理论对比,该如何选择(面试回答)?
文章对支持向量机(SVM)、逻辑回归(LR)和决策树(DT)进行了直观和理论上的对比,并提供了在选择这些算法时的考虑因素,包括模型复杂度、损失函数、数据量需求、对缺失值的敏感度等。
56 1
|
6月前
|
机器学习/深度学习 数据采集 算法
深入理解并应用机器学习算法:支持向量机(SVM)
【5月更文挑战第13天】支持向量机(SVM)是监督学习中的强分类算法,用于文本分类、图像识别等领域。它寻找超平面最大化间隔,支持向量是离超平面最近的样本点。SVM通过核函数处理非线性数据,软间隔和正则化避免过拟合。应用步骤包括数据预处理、选择核函数、训练模型、评估性能及应用预测。优点是高效、鲁棒和泛化能力强,但对参数敏感、不适合大规模数据集且对缺失数据敏感。理解SVM原理有助于优化实际问题的解决方案。
|
5月前
|
机器学习/深度学习 算法 Windows
【阿旭机器学习实战】【34】使用SVM检测蘑菇是否有毒--支持向量机
【阿旭机器学习实战】【34】使用SVM检测蘑菇是否有毒--支持向量机
|
6月前
|
机器学习/深度学习 算法
探索机器学习中的支持向量机(SVM)算法
【5月更文挑战第31天】 在数据科学的广阔天地中,支持向量机(SVM)以其卓越的性能和强大的理论基础脱颖而出。本文将深入剖析SVM的工作原理、核心概念以及实际应用,旨在为读者提供一个清晰的理解视角,并通过实例演示其在分类问题中的有效性。我们将从线性可分的情况出发,逐步过渡到非线性问题的处理方法,并探讨如何通过调整参数来优化模型的性能。
291 0
|
6月前
|
机器学习/深度学习 人工智能 算法
探索机器学习中的支持向量机(SVM)算法
【5月更文挑战第28天】 在数据科学与人工智能的领域中,支持向量机(Support Vector Machines, SVM)是一种强大的监督学习模型,它基于统计学习理论中的VC维理论和结构风险最小化原则。本文将深入探讨SVM的数学原理、关键概念以及实际应用案例。我们将透过SVM的镜头,理解其在分类和回归问题中的应用,并讨论如何通过核技巧克服维度灾难,提高模型的泛化能力。文章还将展示使用SVM解决实际问题的步骤和注意事项,为读者提供一个清晰的SVM应用指南。
|
6月前
|
机器学习/深度学习 人工智能 算法
深入解析机器学习中的支持向量机(SVM)
深入解析机器学习中的支持向量机(SVM)
357 0