阿里二面:RocketMQ 消息积压了,增 加消费者有用吗?

简介: 面试官:RocketMQ 消息积压了,增 加消费者有用吗?我:这个要看具体的场景,不同的场景下情况是不一样的。面试官:可以详细说一下吗?我:如果消费者的数量小于 MessageQueue 的数量,增加消费者可以加快消 息消费速度,减少消 息积压。比如一个 Topic 有 4 个 MessageQueue,2 个消费者进行消费,如果增加一个消费者,明细可以加快拉取消息的频率。如下图:

面试官:RocketMQ 消息积压了,增 加消费者有用吗?

:这个要看具体的场景,不同的场景下情况是不一样的。

面试官:可以详细说一下吗?

:如果消费者的数量小于 MessageQueue 的数量,增加消费者可以加快消 息消费速度,减少消 息积压。比如一个 Topic 有 4 个 MessageQueue,2 个消费者进行消费,如果增加一个消费者,明细可以加快拉取消息的频率。如下图:

网络异常,图片无法展示
|

如果消费者的数量大于等于 MessageQueue 的数量,增加消费者是没有用的。比如一个 Topic 有 4 个 MessageQueue,并且有 4 个消费者进行消费。如下图

网络异常,图片无法展示
|

面试官:你说的第一种情况,增加消费者一定能加快消 息 消 费的速度吗?

:这...,一般情况下是可以的。

面试官:有特殊的情况吗?

:当然有。消费者消息拉取的速度也取决于本地消息的消费速度,如果本地消息消费的慢,就会延迟一段时间后再去拉取。

面试官:在什么情况下消费者会延迟一段时间后再去拉取呢?

:消费者拉取的消息存在 ProcessQueue,消费者是有流量控制的,如果出现下面三种情况,就不会主动去拉取:

  • ProcessQueue 保存的消息数量超过阈值(默认 1000,可以配置);
  • ProcessQueue 保存的消息大小超过阈值(默认 100M,可以配置);
  • 对于非顺序消费的场景,ProcessQueue 中保存的最后一条和第一条消息偏移量之差超过阈值(默认 2000,可以配置)。

这部分源码请参考类:org.apache.rocketmq.client.impl.consumer.DefaultMQPushConsumerImpl。

面试官:还有其他情况吗?

:对于顺序消费的场景,ProcessQueue 加锁失败,也会延迟拉取,这个延迟时间是 3s。

面试官:消费者延迟拉取消息,一般可能是什么原因导致的呢?

:其实延迟拉取的本质就是消费者消费慢,导致下次去拉取的时候 ProcessQueue 中积压的消息超过阈值。以下面这张架构图为例:

网络异常,图片无法展示
|

消费者消费慢,可 是能下面的原因:

  • 消费者处理的业务逻辑复杂,耗时很长;
  • 消费者有慢查询,或者数据库负载高导致响应慢;
  • 缓存等中间件响应慢,比如 Redis 响应慢;
  • 调用外部服务接口响应慢。

面试官:对于外部接口响应慢的情况,有什么应对措施吗?

:这个要分情况讨论。

如果调用外部系统只是一个通知,或者调用外部接口的结果并 不处理,可以采用异步的方式,异步逻辑里采用重试的方式 保 证 接口调成 功。

如果外部接口返回结果必须要处理,可以考虑接口返回的结果是否可以缓存默认值(要考虑业务可行),在调用失败后采用快速降级的方式,使用默认值替代返回接口返回值。

如果这个接口返回结果必须要处理,并且不能缓存,可以把拉取到的消息存入本地然后给 Broker 直接返回 CONSUME_SUCCESS。等外部系统恢复正常后再从本地取出来进行处理。

面试官:如果消 费 者数小于 MessageQueue 数量,并且外部系统响应正常,为了快速消费积压消息而增加消费者,有什么需要考虑的吗?

:外部系统虽然响应正常,但是增加多个消费者后,外部系统的接口调用量会突增,如果达到吞吐量上限,外部系统会响应变慢,甚至被打挂。

同时也要考虑本地数据库、缓存的压力,如果数据库响应变慢,处理消息的速度就会变慢,起不到缓解消息积压的作用。

面试官:新增加了消费者后,怎么给它分配 MessageQueue 呢?

:Consumer 在拉取消息之前,需要对 MessageQueue 进行负载操作。RocketMQ 使用一个定时器来完成负载操作,默认每间隔 20s 重新负载一次。

面试官:能详细说一下都有哪些负载策略吗?

:RocketMQ 提供了 6 种负载策略,依次来看一下。

平均负载策略:

  1. 把消费者进行排序;
  2. 计算每个消费者可以平均分配的 MessageQueue 数量;
  3. 如果消费者数量大于 MessageQueue 数量,多出的消费者就分不到;
  4. 如果不可以平分,就使用 MessageQueue 总 数量对消费者数量求余数 mod;
  5. 对前 mod 数量消费者,每个消费者加一个,这样就获取到了每个消费者分配的 MessageQueue 数量。

比如 4 个 MessageQueue 和 3 个消费者的情况:

网络异常,图片无法展示
|

源代码的逻辑非常简单,如下:

// AllocateMessageQueueAveragely 这个类
// 4 个 MessageQueue 和 3 个消费者的情况,假如第一个,index = 0
int index = cidAll.indexOf(currentCID);
// mod = 1
int mod = mqAll.size() % cidAll.size();
// averageSize = 2
int averageSize =
    mqAll.size() <= cidAll.size() ? 1 : (mod > 0 && index < mod ? mqAll.size() / cidAll.size()
                                         + 1 : mqAll.size() / cidAll.size());
// startIndex = 0
int startIndex = (mod > 0 && index < mod) ? index * averageSize : index * averageSize + mod;
// range = 2,所以第一个消费者分配到了2个
int range = Math.min(averageSize, mqAll.size() - startIndex);
for (int i = 0; i < range; i++) {
    result.add(mqAll.get((startIndex + i) % mqAll.size()));
}

循环分配策略:

这个很容易理解,遍 历 消费者,把 MessageQueue 分一个给遍历到的消费者,如果 MessageQueue 数量比消费者多,需要进行多次遍历,遍历次数等于 (MessageQueue 数量/消费者数量),还是以 4 个 MessageQueue 和 3 个消费者的情况,如下图:

网络异常,图片无法展示
|

源代码如下:

//AllocateMessageQueueAveragelyByCircle 这个类
//4 个 MessageQueue 和 3 个消费者的情况,假如第一个,index = 0
int index = cidAll.indexOf(currentCID);
for (int i = index; i < mqAll.size(); i++) {
    if (i % cidAll.size() == index) {
        //i == 0 或者 i == 3 都会走到这里
        result.add(mqAll.get(i));
    }
}

自定义分配策略:

这种策略在消费者启动的时候可以指定消费哪些 MessageQueue。可以参考下面代码:

AllocateMessageQueueByConfig allocateMessageQueueByConfig = new AllocateMessageQueueByConfig();
//绑定消费 messageQueue1
allocateMessageQueueByConfig.setMessageQueueList(Arrays.asList(new MessageQueue("messageQueue1","broker1",0)));
consumer.setAllocateMessageQueueStrategy(allocateMessageQueueByConfig);
consumer.start();

按照机房分配策略:

这种方式 Consumer 只消费指定机房的 MessageQueue,如下图:Consumer0、Consumer1、Consumer2 绑定 room1 和 room2 这两个机房,而 room3 这个机房没有消费者。

网络异常,图片无法展示
|

Consumer 启动的时候需要绑定机房名称。可以参考下面代码:

AllocateMessageQueueByMachineRoom allocateMessageQueueByMachineRoom = new AllocateMessageQueueByMachineRoom();
//绑定消费 room1 和 room2 这两个机房
allocateMessageQueueByMachineRoom.setConsumeridcs(new HashSet<>(Arrays.asList("room1","room2")));
consumer.setAllocateMessageQueueStrategy(allocateMessageQueueByMachineRoom);
consumer.start();

这种策略 broker 的命名必须按照格式:机房名@brokerName,因为消费者分配队列的时候,首先按照机房名称过滤出所有的 MessageQueue,然后再按照平均分配策略进行分配

//AllocateMessageQueueByMachineRoom 这个类
List<MessageQueue> premqAll = new ArrayList<MessageQueue>();
for (MessageQueue mq : mqAll) {
    String[] temp = mq.getBrokerName().split("@");
    if (temp.length == 2 && consumeridcs.contains(temp[0])) {
        premqAll.add(mq);
    }
}
//上面按照机房名称过滤出所有的 MessageQueue 放入premqAll,后面就是平均分配策略

按照机房就近分配:

跟按照机房分配原则相比,就近分配的好处是可以对没有消费者的机房进行分配。如下图,机房 3 的 MessageQueue 也分配到了消费者:

网络异常,图片无法展示
|

如果一个机房没有消费者,则会把这个机房的 MessageQueue 分配给集群中所有的消费者。

源码所在类:AllocateMachineRoomNearby。

一致性 Hash 算法策略:

把所有的消费者经过 Hash 计算分布到 Hash 环上,对所有的 MessageQueue 进行 Hash 计算,找到顺时针方向最近的消费者节点进行绑定。如下图:

网络异常,图片无法展示
|


源代码如下:

//所在类 AllocateMessageQueueConsistentHash
Collection<ClientNode> cidNodes = new ArrayList<ClientNode>();
for (String cid : cidAll) {
    cidNodes.add(new ClientNode(cid));
}
//使用消费者构建 Hash 环,把消费者分布在 Hash 环节点上
final ConsistentHashRouter<ClientNode> router; //for building hash ring
if (customHashFunction != null) {
    router = new ConsistentHashRouter<ClientNode>(cidNodes, virtualNodeCnt, customHashFunction);
} else {
    router = new ConsistentHashRouter<ClientNode>(cidNodes, virtualNodeCnt);
}
//对 MessageQueue 做 Hash 运算,找到环上距离最近的消费者
List<MessageQueue> results = new ArrayList<MessageQueue>();
for (MessageQueue mq : mqAll) {
    ClientNode clientNode = router.routeNode(mq.toString());
    if (clientNode != null && currentCID.equals(clientNode.getKey())) {
        results.add(mq);
    }
}

面试官:恭喜你,通过了。

相关实践学习
消息队列RocketMQ版:基础消息收发功能体验
本实验场景介绍消息队列RocketMQ版的基础消息收发功能,涵盖实例创建、Topic、Group资源创建以及消息收发体验等基础功能模块。
消息队列 MNS 入门课程
1、消息队列MNS简介 本节课介绍消息队列的MNS的基础概念 2、消息队列MNS特性 本节课介绍消息队列的MNS的主要特性 3、MNS的最佳实践及场景应用 本节课介绍消息队列的MNS的最佳实践及场景应用案例 4、手把手系列:消息队列MNS实操讲 本节课介绍消息队列的MNS的实际操作演示 5、动手实验:基于MNS,0基础轻松构建 Web Client 本节课带您一起基于MNS,0基础轻松构建 Web Client
相关文章
|
1月前
|
消息中间件 Java 数据库
新版 Seata 集成 RocketMQ事务消息,越来越 牛X 了!阿里的 Seata , yyds !
这里 借助 Seata 集成 RocketMQ 事务消息的 新功能,介绍一下一个新遇到的面试题:如果如何实现 **强弱一致性 结合**的分布式事务?
新版 Seata 集成 RocketMQ事务消息,越来越 牛X 了!阿里的 Seata , yyds !
|
1月前
|
消息中间件 存储 canal
阿里面试:canal+MQ,会有乱序的问题吗?
本文详细探讨了在阿里面试中常见的问题——“canal+MQ,会有乱序的问题吗?”以及如何保证RocketMQ消息有序。文章首先介绍了消息有序的基本概念,包括全局有序和局部有序,并分析了RocketMQ中实现消息有序的方法。接着,针对canal+MQ的场景,讨论了如何通过配置`canal.mq.partitionsNum`和`canal.mq.partitionHash`来保证数据同步的有序性。最后,提供了多个与MQ相关的面试题及解决方案,帮助读者更好地准备面试,提升技术水平。
阿里面试:canal+MQ,会有乱序的问题吗?
|
3月前
|
消息中间件 存储 负载均衡
我服了,RocketMQ消费者负载均衡内核是这样设计的
文章为理解RocketMQ的负载均衡机制提供了深入的技术洞察,并对如何在实际应用中扩展和定制负载均衡策略提供了有价值的见解。
我服了,RocketMQ消费者负载均衡内核是这样设计的
|
3月前
|
消息中间件 人工智能 监控
|
3月前
|
消息中间件 存储 负载均衡
RocketMQ消费者消费消息核心原理(含长轮询机制)
这篇文章深入探讨了Apache RocketMQ消息队列中消费者消费消息的核心原理,特别是长轮询机制。文章从消费者和Broker的交互流程出发,详细分析了Push和Pull两种消费模式的内部实现,以及它们是如何通过长轮询机制来优化消息消费的效率。文章还对RocketMQ的消费者启动流程、消息拉取请求的发起、Broker端处理消息拉取请求的流程进行了深入的源码分析,并总结了RocketMQ在设计上的优点,如单一职责化和线程池的使用等。
RocketMQ消费者消费消息核心原理(含长轮询机制)
|
3月前
|
消息中间件 缓存 Java
RocketMQ - 消费者消费方式
RocketMQ - 消费者消费方式
93 0
|
3月前
|
消息中间件 RocketMQ
RocketMQ - 消费者进度保存机制
RocketMQ - 消费者进度保存机制
73 0
|
3月前
|
消息中间件 RocketMQ
RocketMQ - 消费者Rebalance机制
RocketMQ - 消费者Rebalance机制
58 0
|
3月前
|
消息中间件 存储 缓存
RocketMQ - 消费者启动机制
RocketMQ - 消费者启动机制
51 0
|
3月前
|
消息中间件 存储 缓存
RocketMQ - 消费者概述
RocketMQ - 消费者概述
63 0