数据结构和算法-约瑟夫问题解决(2)|学习笔记

简介: 快速学习数据结构和算法-约瑟夫问题解决(2)

开发者学堂课程【Go 语言核心编程 - 数据结构和算法: 数据结构和算法-约瑟夫问题解决(2)】学习笔记,与课程紧密联系,让用户快速学习知识。

课程地址:https://developer.aliyun.com/learning/course/627/detail/9847


数据结构和算法-约瑟夫问题解决(2)


现在已经有了一个小孩了,现在就要解决一个核心问题,就是算法。算法其实是有固定算法的,比如识别算法或者是编码算法,但是也有些针对实际问题解决的,就是自己设计的一些解决方案,都可以叫做算法。

现在至少我们要知道接收的几个变量,就是链表是什么,k数到几,k和m很重要,至于用几个小孩n不是很重要,因为把头结点给到之后就自然知道是几个了。

/*

设编号为1.2。n的n个人围坐一圈,约定编号为k(1<=k<=n)

的人从1开始报数,数到m的那个人出列,它的下一位又从1开始报数,数到m的那个人又出列,依次类推,直到所有人出列为止,由此产生一个出队编号的序列

*/

//分析思路

//1.编写一个函数,PlayGame(first*Boy,startNo int,countNum int)

//2.最后我们使用一个算法,按照要求,在环形链表中留下最后一个人

Func Playgame(first*Boy,startNo int,countNum int)虽然只有一个小孩  但是数多少下都可以

//1、空的链表我们单独的处理

if first. Next == nil(

fmt. Println("空的链表,没有小孩")

Return

//留一个,判断 startNo<=小孩总数

//2.需要定义辅助指针,帮助我们删除小孩

tall:=first

//3.让 tail 执行环形链表的最后一个小孩,这个非常的重要

//因为 tail 在删除小孩时需要使用到

For {

If Tail.Next==first{ //说明 tail 到了最后的小孩

break

}

Tail = tail.Next

}

//4.让 first 移动到 startNo(这个时候就不需要辅助结点,因为最后它也会被删掉)[后面我们删除小孩就以 first 为准,first 指向谁就删掉谁]

For i:=1;ii<==startNo - 1;i++{

First = first.Next

Tail = tail.Next

}

//5.开始数 countnum,然后就删除 first 指向的小孩

For {

//开始数countNum-1次

For i :=1;i<=countNum-1;i++{

}

Fmt.printf(“小孩的编号为%d 出圈->”,first.No)

//删除first执行的小孩

first.Next=first

tail.Next=first

//判断如果 tail ==first,圈子中只有一个小孩

If tail==first{

break

}

}

Fmt.printf(“最后出圈的小孩的编号为%d 出圈->”,first.No)

}

只剩一个小孩,它的 first 和 tail 就相等了

因为最后只留一个人,所以这就是循环

这个 for 循环走完环形链表应该是这样的:

image.png

此时这两个指针要同时移动,移动到指定的 startNo 要移动 startNo-1 次,比如说从2号开始就移动一次就可以

func main(){

first:=Add Boy(5)

//显示

ShowBoy(first)

PlayGame(first,2,3)

}

image.png

输出结果

环形在删除人时候有一个特别重要的就是要有辅助结点

示意图:

image.png

现在已经有了一个头结点指向1号,现在还需要一个指针指向5号结点,还需要tali指针指向1号最后,因为如果要删除1号结点没有后边的指针就删除不了,因此现在就需要 tail 指针指向最后。目前 tail 是指向1号的,要是从第二个开始数那么头结点就需要指向2号,然后tail同步向前移动。

再向前移动两步,2号和4号连接,整个链表中3号就出列了,2号与3号之间的线就断掉了,因此三号就变成了一个出列的小孩。

相关文章
|
2月前
|
存储 人工智能 算法
数据结构与算法细节篇之最短路径问题:Dijkstra和Floyd算法详细描述,java语言实现。
这篇文章详细介绍了Dijkstra和Floyd算法,这两种算法分别用于解决单源和多源最短路径问题,并且提供了Java语言的实现代码。
80 3
数据结构与算法细节篇之最短路径问题:Dijkstra和Floyd算法详细描述,java语言实现。
|
2月前
|
存储 算法 Java
Set接口及其主要实现类(如HashSet、TreeSet)如何通过特定数据结构和算法确保元素唯一性
Java Set因其“无重复”特性在集合框架中独树一帜。本文解析了Set接口及其主要实现类(如HashSet、TreeSet)如何通过特定数据结构和算法确保元素唯一性,并提供了最佳实践建议,包括选择合适的Set实现类和正确实现自定义对象的hashCode()与equals()方法。
35 4
|
2月前
|
搜索推荐 算法
数据结构与算法学习十四:常用排序算法总结和对比
关于常用排序算法的总结和对比,包括稳定性、内排序、外排序、时间复杂度和空间复杂度等术语的解释。
22 0
数据结构与算法学习十四:常用排序算法总结和对比
|
2月前
|
机器学习/深度学习 搜索推荐 算法
探索数据结构:初入算法之经典排序算法
探索数据结构:初入算法之经典排序算法
|
2月前
|
算法 Java 索引
数据结构与算法学习十五:常用查找算法介绍,线性排序、二分查找(折半查找)算法、差值查找算法、斐波那契(黄金分割法)查找算法
四种常用的查找算法:顺序查找、二分查找(折半查找)、插值查找和斐波那契查找,并提供了Java语言的实现代码和测试结果。
23 0
|
25天前
|
C语言
【数据结构】栈和队列(c语言实现)(附源码)
本文介绍了栈和队列两种数据结构。栈是一种只能在一端进行插入和删除操作的线性表,遵循“先进后出”原则;队列则在一端插入、另一端删除,遵循“先进先出”原则。文章详细讲解了栈和队列的结构定义、方法声明及实现,并提供了完整的代码示例。栈和队列在实际应用中非常广泛,如二叉树的层序遍历和快速排序的非递归实现等。
116 9
|
16天前
|
存储 算法
非递归实现后序遍历时,如何避免栈溢出?
后序遍历的递归实现和非递归实现各有优缺点,在实际应用中需要根据具体的问题需求、二叉树的特点以及性能和空间的限制等因素来选择合适的实现方式。
22 1
|
3天前
|
存储 缓存 算法
在C语言中,数据结构是构建高效程序的基石。本文探讨了数组、链表、栈、队列、树和图等常见数据结构的特点、应用及实现方式
在C语言中,数据结构是构建高效程序的基石。本文探讨了数组、链表、栈、队列、树和图等常见数据结构的特点、应用及实现方式,强调了合理选择数据结构的重要性,并通过案例分析展示了其在实际项目中的应用,旨在帮助读者提升编程能力。
22 5
|
18天前
|
存储 算法 Java
数据结构的栈
栈作为一种简单而高效的数据结构,在计算机科学和软件开发中有着广泛的应用。通过合理地使用栈,可以有效地解决许多与数据存储和操作相关的问题。
|
21天前
|
存储 JavaScript 前端开发
执行上下文和执行栈
执行上下文是JavaScript运行代码时的环境,每个执行上下文都有自己的变量对象、作用域链和this值。执行栈用于管理函数调用,每当调用一个函数,就会在栈中添加一个新的执行上下文。