PIE-engine APP 教程 ——基于PIE云平台的城市生态宜居性评价系统——以京津冀城市群为例

简介: PIE-engine APP 教程 ——基于PIE云平台的城市生态宜居性评价系统——以京津冀城市群为例

   这个系统是一个计算京津冀地区的生态宜居性评价的系统,而且是四季性的,整体上代码中,首先是加载数据和加载研究区,然后定义常量参数(定义图层和可视化参数以及图例变量),然后定义指定的研究区数据,这个系统中有一个小的差异加载的全国县级尺度、市级尺度和省级尺度因为研究区的面积大小不同,所用的统计的scale的统计是不同的分别是1000,2000,3000的,以此来提升运算速度同时嵌套了条件函数的与设定一次来返回给研究区,再预设过程中,还包括地表温度、MNDWI、植被覆盖度、NDBI、去云函数以及其它函数(NO2\O3\SO2\CO\),最终合成AQI空气质量的计算函数。接下来是主函数,用于整体流程的控制。最后一个部分是UI部分的设定和统计数据的结果,这里是指定年份通过循环函数计算出的季节性结果。

这个系统因为数据的限制所以只能再2018年至2020年,修改代码后的结果可以延伸到2022年

这里有一个链接函数:

ui.Cascader(placeholder,content,value,onChange,disabled,style)

级联选择组件。

方法参数:

- ui(ui)

调用者:ui对象。

- placeholder(String)

默认显示的文本。

- content(List)

级联菜单的内容。

- value(List)

当前选择值。

- onChange(Function)

选择不同值时触发的方法。

- disabled(Boolean)

组件是否可用。

- style(Object)

组件的样式。

返回值:ui.Cascader

ui.GeoCascader(init,placeholder,disabled,style,onChange)

行政区划级联选择组件。

方法参数:

- ui(ui)

调用者:ui对象。

- init(Object)

自定义配置显示数据对象:{list: 需要显示的行政区划级别列表,可选参数[province,city,county], province:要显示的省列表, city:要显示的市列表, county:要显示的县列表}

- placeholder(String)

默认显示的文本。

- disabled(Boolean)

组件是否可用。

- style(Object)

组件的样式。

- onChange(Function)

选择不同值时触发的方法。

返回值:ui.GeoCascader

ui.Radio(label,value,onChange,disabled,style)单项选择的一个按钮

单选按钮。

方法参数:

- ui(ui)

调用者:ui对象。

- label(List)

单选按钮的内容列表。

- value(String)

被选中的单选按钮。

- onChange(Function)

状态修改后触发事件。

- disabled(List)

不可用的单选按钮列表。

- style(Object)

组件样式

返回值:ui.Radio

removeLayer(key)

移除地图上指定的图层

方法参数:

- map(ui.Map)

调用者:ui.Map实例。

- key(String)

图层唯一key,由addLayer返回

返回值:Object

image.png

 

代码:

/**
 * @Name    :   基于PIE云平台的城市生态宜居性评价系统——以京津冀城市群为例
 * @Time    :   2021/8/21
 * @Author  :   中国石油大学(华东)牛转乾坤队
 * @Version :   1.0
 * @E-mail  :   genyunsun@163.com
 * @Source  :   航天宏图第四届 “航天宏图杯”PIE软件二次开发大赛云开发组一等奖获奖作品
 */
var libs = require("https://pie-engine-static-data.s3.cn-northwest-1.amazonaws.com.cn/engine-studio-data/demoData.js");
// 利用计算的结果 统计各个区域的各个指标变化情况:
var staticData = libs.data;
// print(staticData)
//划定研究区域
var Province = pie.FeatureCollection("user/pieadmin/JJJ_Provinces");
var Cities = pie.FeatureCollection("user/pieadmin/JJJ_Cities");
var Countries = pie.FeatureCollection("user/pieadmin/JJJ_County");
var all_region = pie.FeatureCollection("user/pieadmin/JingJinJi");
//定义常量参数
var layerKey = null; // 地图层 layerkery
var roilayerKey = null; // 矢量图层 key
var selectTag = "EI";
var selectSenson = "spring";
var seasonindex = 0; //季节的索引值 , 默认为0 ,春季
var environmetClass = 1; // 默认环境等级
var selectStartDate = "2020-3-1"; // 默认起始时间
var selectCode = "110101"; // 默认地区代码
var countyname = "北京市/东城区";
var selectYear = 2019; //通过滚动轴选择年份
var showLevel = 10; //  显示层级 , 区域越大层级越小
var reduceScale = 1000; // 局部统计使用的尺度 , 统计的区域越大, 尺度越大 ,防止内存不足
var staticType = "Season"; // 统计表的形式
var region_level = "District"; // 显示的区域级别  默认 Disrrict
var charttype = "bar";
var roi = null; // 显示的区域
Map.addLayer(
  Cities,
  { color: "#044b4b", fillColor: "#00000000", width: 1.5 },
  "Cities",
  false
);
Map.addLayer(
  Countries,
  { color: "#7b7b7b", fillColor: "#00000000", width: 1.0 },
  "Countries",
  false
);
var visAQI = {
  min: 0,
  max: 1,
  palette: [
    "#040274",
    "#040281",
    "#0502a3",
    "#0502b8",
    "#0502ce",
    "#0502e6",
    "#0602ff",
    "#235cb1",
    "#307ef3",
    "#269db1",
    "#30c8e2",
    "#32d3ef",
    "#3be285",
    "#3ff38f",
    "#86e26f",
    "#3ae237",
    "#b5e22e",
    "#d6e21f",
    "#fff705",
    "#ffd611",
    "#ffb613",
    "#ff8b13",
    "#ff6e08",
    "#ff500d",
    "#ff0000",
    "#de0101",
    "#c21301",
    "#a71001",
    "#911003",
  ],
};
var colors1 = [
  "#0602ff",
  "#235cb1",
  "#307ef3",
  "#269db1",
  "#30c8e2",
  "#32d3ef",
  "#3be285",
  "#3ff38f",
  "#86e26f",
  "#3ae237",
  "#b5e22e",
  "#d6e21f",
  "#fff705",
  "#ffd611",
  "#ffb613",
  "#ff8b13",
  "#ff6e08",
  "#ff500d",
  "#ff0000",
  "#de0101",
]; // 由绿到红
var colors2 = [
  "#ff6e08",
  "#ff8b13",
  "#ff9613",
  "#ffd611",
  "#fff705",
  "#d6e21f",
  "#b5e22e",
  "#3ae237",
  "#86e26f",
  "#3ff38f",
  "#3be285",
  "#32d3ef",
]; // 由红到绿
//获取指定的ROI数据
function getROI(code) {
  print(code, parseInt(code));
  if (region_level == "District") {
    var fCol = pie.FeatureCollection("NGCC/CHINA_COUNTY_BOUNDARY");
    showLevel = 10;
    reduceScale = 1000;
  } else if (region_level == "City") {
    var fCol = pie.FeatureCollection("NGCC/CHINA_CITY_BOUNDARY");
    showLevel = 7;
    reduceScale = 2000;
  } else if (region_level == "Province") {
    var fCol = pie.FeatureCollection("NGCC/CHINA_PROVINCE_BOUNDARY");
    showLevel = 6;
    reduceScale = 3000;
  }
  if (region_level == "All") {
    roi = all_region.first().geometry();
    showLevel = 5;
    reduceScale = 5000;
  } else {
    roi = fCol
      .filter(pie.Filter.eq("code", parseInt(code)))
      .first()
      .geometry();
  }
  if (roilayerKey != null) {
    Map.removeLayer(roilayerKey);
  }
  if (roi != null) {
    roilayerKey = Map.addLayer(
      roi,
      { color: "#ff0000", fillColor: "#00000000" },
      "roi"
    );
    Map.centerObject(roi, showLevel);
  }
  return roi;
}
// 向地图中添加 图例 (颜色条)
function addMapLenged(INDEX) {
  var colors = colors1;
  switch (INDEX) {
    case "FVC":
      colors = colors2;
      break;
    case "MNDWI":
      colors = colors2;
      break;
    case "EI":
      colors = colors2;
      break;
  }
  var data = {
    title: INDEX,
    colors: colors,
    labels: ["0", "0.2", "0.4", "0.6", "0.8", "1.0"],
    step: 30,
  };
  var style = {
    right: "550px",
    bottom: "70px",
    height: "70px",
    width: "300px",
  };
  var legend = ui.Legend(data, style);
  Map.addUI(legend);
}
//地表温度反演
function LSTMap(image, roi) {
  var ndvi = image
    .expression("(B5-B4)/(B5+B4)", {
      B4: image.select("B4"),
      B5: image.select("B5"),
    })
    .rename("NDVI");
  var normalNdvi = ndvi.subtract(-0.3).divide(pie.Number(0.81).subtract(-0.3));
  var fv = normalNdvi.power(2.0).rename("fv");
  var a = pie.Number(0.025);
  var b = pie.Number(0.986);
  var EM = fv
    .multiply(a)
    .add(pie.Image(1).subtract(fv).multiply(0.02).add(pie.Image(b)))
    .rename("EMM");
  var thermal = image.select("B10").multiply(0.1);
  var EM_LOG = EM.log();
  var FenMU = thermal.divide(1.438).multiply(0.00115);
  var Fenmu2 = FenMU.multiply(EM_LOG).add(1.0);
  var LST = thermal.divide(Fenmu2).subtract(273.15).rename("LST");
  //计算最大值最小值
  var LST_max = LST.reduceRegion(pie.Reducer.max(), roi, reduceScale).get(
    "LST"
  );
  LST_max = pie.Number(LST_max);
  var LST_min = LST.reduceRegion(pie.Reducer.min(), roi, reduceScale).get(
    "LST"
  );
  LST_min = pie.Number(LST_min);
  var nORLST = LST.subtract(LST_min).divide(LST_max.subtract(LST_min));
  return nORLST;
}
//计算 MNDWI (水体分布)
function mNDWI(image, roi) {
  var b3 = image.select("B3");
  var b6 = image.select("B6");
  var mNDWI = b3.subtract(b6).divide(b3.add(b6)).rename("mNDWI");
  var mNDWI_max = mNDWI
    .reduceRegion(pie.Reducer.max(), roi, reduceScale)
    .get("mNDWI");
  mNDWI_max = pie.Number(mNDWI_max);
  var mNDWI_min = mNDWI
    .reduceRegion(pie.Reducer.min(), roi, reduceScale)
    .get("mNDWI");
  mNDWI_min = pie.Number(mNDWI_min);
  //归一化
  var nORmNDWI = mNDWI
    .subtract(mNDWI_min)
    .divide(mNDWI_max.subtract(mNDWI_min));
  return nORmNDWI;
}
// 植被覆盖度计算
function l8FVC(img, roi) {
  var B4 = img.select("B4");
  var B5 = img.select("B5");
  var NDVI = B5.subtract(B4).divide(B5.add(B4)).rename("NDVI");
  //4.计算京津冀范围FVC
  //计算区域内NDVI最大值
  var NDVI_max = NDVI.reduceRegion(pie.Reducer.max(), roi, reduceScale).get(
    "NDVI"
  );
  NDVI_max = pie.Number(NDVI_max);
  //计算区域内NDVI最小值
  var NDVI_min = NDVI.reduceRegion(pie.Reducer.min(), roi, reduceScale).get(
    "NDVI"
  );
  NDVI_min = pie.Number(NDVI_min);
  //反演区域植被覆盖度并加载
  var img_FVC = NDVI.subtract(NDVI_min).divide(NDVI_max.subtract(NDVI_min));
  return img_FVC;
}
//计算 NDBI  建筑物密度
function l8NDBI(img, roi) {
  var B5 = img.select("B5");
  var B6 = img.select("B6");
  var NDBI = B6.subtract(B5).divide(B6.add(B5)).rename("NDBI");
  //计算最大值最小值
  var NDBI_max = NDBI.reduceRegion(pie.Reducer.max(), roi, reduceScale).get(
    "NDBI"
  );
  NDBI_max = pie.Number(NDBI_max);
  var NDBI_min = NDBI.reduceRegion(pie.Reducer.min(), roi, reduceScale).get(
    "NDBI"
  );
  NDBI_min = pie.Number(NDBI_min);
  var nORNDBI = NDBI.subtract(NDBI_min).divide(NDBI_max.subtract(NDBI_min));
  return nORNDBI;
}
// NO2 去云函数
function cloudMask(image) {
  var k = image.updateMask(image.select("cloud_fraction").lt(0.2));
  return k.select("tropospheric_NO2_column_number_density");
} //NO2 去云
function normalNO2(startDate, endDate, roi) {
  //加载对二氧化氮进行监测的近实时数据流产品数据
  var NO2cOLL = pie
    .ImageCollection("S5P/OFFL_L3_NO2")
    .filterBounds(roi)
    .filterDate(startDate, endDate);
  var NO2IMG = NO2cOLL.select([
    "tropospheric_NO2_column_number_density",
    "cloud_fraction",
  ]).map(cloudMask);
  NO2IMG = NO2IMG.mean().clip(roi).rename("NO2");
  var NO23_max = NO2IMG.reduceRegion(pie.Reducer.max(), roi, 7000).get("NO2");
  NO23_max = pie.Number(NO23_max);
  var NO23_min = NO2IMG.reduceRegion(pie.Reducer.min(), roi, 7000).get("NO2");
  NO23_min = pie.Number(NO23_min);
  var NORNO23 = NO2IMG.subtract(NO23_min).divide(NO23_max.subtract(NO23_min));
  return NORNO23;
}
// O3 去云函数
function cloudMask_O3(image) {
  var k = image.updateMask(image.select("cloud_fraction").lt(0.2));
  return k.select("O3_column_number_density");
}
function normalO3(startDate, endDate, roi) {
  var O3 = pie
    .ImageCollection("S5P/OFFL_L3_O3")
    .filterBounds(roi)
    .filterDate(startDate, endDate);
  var O33 = O3.select(["O3_column_number_density", "cloud_fraction"])
    .map(cloudMask_O3)
    .mean()
    .clip(roi)
    .rename("O3");
  var O33_max = O33.reduceRegion(pie.Reducer.max(), roi, 7500).get("O3");
  O33_max = pie.Number(O33_max);
  var O33_min = O33.reduceRegion(pie.Reducer.min(), roi, 7500).get("O3");
  O33_min = pie.Number(O33_min);
  var NORO33 = O33.subtract(O33_min).divide(O33_max.subtract(O33_min));
  return NORO33;
}
//SO2 去云
function cloudMask_SO2(image) {
  var k = image.updateMask(image.select("cloud_fraction").lt(0.2));
  return k.select("SO2_column_number_density");
}
function normalSO2(startDate, endDate, roi) {
  var SO2 = pie
    .ImageCollection("S5P/OFFL_L3_SO2")
    .filterBounds(roi)
    .filterDate(startDate, endDate);
  var SO23 = SO2.select(["SO2_column_number_density", "cloud_fraction"])
    .map(cloudMask_SO2)
    .mean()
    .clip(roi)
    .rename("SO2");
  var SO23_max = SO23.reduceRegion(pie.Reducer.max(), roi, 7500).get("SO2");
  SO23_max = pie.Number(SO23_max);
  var SO23_min = SO23.reduceRegion(pie.Reducer.min(), roi, 7500).get("SO2");
  SO23_min = pie.Number(SO23_min);
  //归一化
  var NORSO23 = SO23.subtract(SO23_min).divide(SO23_max.subtract(SO23_min));
  //加载春季SO2影像
  return NORSO23;
}
//CO 指标归一化
function normalCO(startDate, endDate, roi) {
  var CO3 = pie
    .ImageCollection("S5P/OFFL_L3_CO")
    .filterBounds(roi)
    .filterDate(startDate, endDate)
    .select("CO_column_number_density")
    .mean()
    .clip(roi)
    .rename("CO");
  var CO3_max = CO3.reduceRegion(pie.Reducer.max(), roi, 7500).get("CO");
  CO3_max = pie.Number(CO3_max);
  var CO3_min = CO3.reduceRegion(pie.Reducer.min(), roi, 7500).get("CO");
  CO3_min = pie.Number(CO3_min);
  var NORCO3 = CO3.subtract(CO3_min).divide(CO3_max.subtract(CO3_min));
  return NORCO3;
}
//计算空气质量
function normalAQI(startDate, endDate, roi) {
  var co = normalCO(startDate, endDate, roi);
  var so2 = normalSO2(startDate, endDate, roi);
  var o3 = normalO3(startDate, endDate, roi);
  var no2 = normalNO2(startDate, endDate, roi);
  var AQI5 = no2
    .multiply(0.25)
    .add(o3.multiply(0.25))
    .add(so2.multiply(0.25))
    .add(co.multiply(0.25))
    .rename("AQI5");
  //计算最大值最小值
  var AQI5_max = AQI5.reduceRegion(pie.Reducer.max(), roi, 7500).get("AQI5");
  AQI5_max = pie.Number(AQI5_max);
  var AQI5_min = AQI5.reduceRegion(pie.Reducer.min(), roi, 7500).get("AQI5");
  AQI5_min = pie.Number(AQI5_min);
  //归一化
  var NORAQI5 = AQI5.subtract(AQI5_min)
    .divide(AQI5_max.subtract(AQI5_min))
    .rename("NORAQI5");
  //加载夏季AQI影像
  return NORAQI5;
}
//计算生态环境质量
function cacluateEI(startDate, endDate, img, roi) {
  var fvc = l8FVC(img, roi);
  var lst = LSTMap(img, roi);
  var ndbi = l8NDBI(img, roi);
  var water = mNDWI(img, roi);
  if (selectYear == "2020") {
    var AQI = normalAQI(startDate, endDate, roi);
    var eI = fvc
      .multiply(0.2465)
      .subtract(ndbi.multiply(0.1308))
      .add(water.multiply(0.1863))
      .subtract(AQI.multiply(0.3688))
      .subtract(lst.multiply(0.0676))
      .rename("EI");
  } else {
    // 绿地0.4094,建筑0.2047,水0.2895,LST0.0965
    print("selectYear:", selectYear);
    var eI = fvc
      .multiply(0.4094)
      .subtract(ndbi.multiply(0.2047))
      .add(water.multiply(0.2895))
      .subtract(lst.multiply(0.0965))
      .rename("EI");
  }
  var eI_max = eI.reduceRegion(pie.Reducer.max(), roi, reduceScale).get("EI");
  eI_max = pie.Number(eI_max);
  var eI_min = eI.reduceRegion(pie.Reducer.min(), roi, reduceScale).get("EI");
  eI_min = pie.Number(eI_min);
  //归一化
  var norEI = eI
    .subtract(eI_min)
    .divide(eI_max.subtract(eI_min))
    .rename("norEI");
  return norEI.clip(all_region.first().geometry());
}
// 主函数 , 控制整体流程
function cacluateVI(roi, startDate, tag) {
  //影像集合
  var endDate = pie.Date(startDate).advance(4, "month");
  var l8Col = pie
    .ImageCollection("LC08/01/T1_SR")
    .filterBounds(roi)
    .filterDate(startDate, endDate)
    .filter(pie.Filter.lt("cloudCover", 30));
  //通过日期过滤影像集合,并且计算指数
  l8Col = l8Col
    .select(["B2", "B3", "B4", "B5", "B6", "B7", "B10", "pixel_qa"])
    .map(function (image) {
      // Bits 3 and 5 are cloud shadow and cloud, respectively.
      var cloudShadowBitMask = 1 << 3;
      var cloudsBitMask = 1 << 5;
      // Get the pixel QA band.
      var qa = image.select("pixel_qa");
      // Both flags should be set to zero, indicating clear conditions.
      var mask = qa
        .bitwiseAnd(cloudShadowBitMask)
        .eq(0)
        .and(qa.bitwiseAnd(cloudsBitMask).eq(0));
      return image.updateMask(mask);
    });
  l8Col = l8Col.select(["B2", "B3", "B4", "B5", "B6", "B7", "B10"]);
  var l8image = l8Col.mean().clip(roi);
  switch (tag) {
    case "EI":
      var eImap = cacluateEI(startDate, endDate, l8image, roi);
      var viseImap = { min: 0, max: 0.85, palette: colors2 };
      layerKey = Map.addLayer(eImap, viseImap, "EI", true);
      addMapLenged("EI");
      break;
    case "FVC":
      var imgFVC = l8FVC(l8image, roi);
      layerKey = Map.addLayer(
        imgFVC,
        { min: 0, max: 0.9, palette: colors2 },
        "FVC",
        true
      );
      addMapLenged("FVC");
      break;
    case "LST":
      var imgLST = LSTMap(l8image, roi);
      layerKey = Map.addLayer(
        imgLST,
        { min: 0, max: 0.9, palette: colors },
        "LST",
        true
      );
      addMapLenged("LST");
      break;
    case "MNDWI":
      var imgMNDWI = mNDWI(l8image, roi);
      layerKey = Map.addLayer(
        imgMNDWI,
        { min: 0, max: 0.9, palette: colors2 },
        "MNDWI",
        true
      );
      addMapLenged("MNDWI");
      break;
    case "NDBI":
      var ndbiimg = l8NDBI(l8image, roi);
      //设置NDBI影像预览参数与颜色组合
      layerKey = Map.addLayer(
        ndbiimg,
        { min: 0, max: 0.9, palette: colors1 },
        "NDBI",
        true
      );
      addMapLenged("NDBI");
      break;
    case "SO2":
      var so2img = normalSO2(startDate, endDate, roi);
      layerKey = Map.addLayer(so2img, visAQI, "SO2", true);
      addMapLenged("SO2");
      break;
    case "NO2":
      var no2img = normalNO2(startDate, endDate, roi);
      layerKey = Map.addLayer(no2img, visAQI, "SO2", true);
      addMapLenged("SO2");
      break;
    case "CO":
      var coimg = normalCO(startDate, endDate, roi);
      layerKey = Map.addLayer(coimg, visAQI, "CO", true);
      addMapLenged("CO");
      break;
    case "O3":
      var o3img = normalO3(startDate, endDate, roi);
      layerKey = Map.addLayer(o3img, visAQI, "O3", true);
      addMapLenged("O3");
      break;
    case "AQI":
      var AQIimg = normalAQI(startDate, endDate, roi);
      layerKey = Map.addLayer(AQIimg, visAQI, "AQI Quality", true);
      addMapLenged("AQI");
      break;
  }
}
// 标题 Label
var label = ui.Label("生态宜居性评估系统-京津冀", {
  "font-size": "20px",
  color: "#00f",
  textAlign: "center",
});
// select 选择要计算的指标
function funCascader(value, selectData) {
  var index = parseInt(value.length);
  selectTag = value[index - 1];
  print("选择的指标为:", selectTag);
}
// 指标选择级联控件
var cascader = ui.Cascader({
  placeholder: "请选择",
  content: [
    {
      value: "FVC",
      label: "植被覆盖度",
    },
    {
      value: "MNDWI",
      label: "水体分布",
    },
    {
      value: "LST",
      label: "地表温度",
    },
    {
      value: "NDBI",
      label: "建筑物密度",
    },
    {
      value: "AQI",
      label: "空气质量",
      children: [
        {
          value: "SO2",
          label: "二氧化硫",
        },
        {
          value: "CO",
          label: "一氧化碳",
        },
        {
          value: "NO2",
          label: "二氧化氮",
        },
        {
          value: "O3",
          label: "臭氧",
        },
      ],
    },
    {
      value: "EI",
      label: "生态环境质量",
    },
  ],
  value: ["FVC"],
  style: { width: "220px" },
  onChange: funCascader,
});
var selectName = ui.Label("选择指标:");
var selectPanel = ui.Panel({
  widgets: [selectName, cascader],
  style: { left: "10px" },
  layout: ui.Layout.flow("horizontal"),
});
// 地区选择回调函数
function inputArea(codeList, nameList) {
  var index = nameList.length;
  if (index <= 0) {
    selectCode = "";
    countyname = "";
  } else {
    selectCode = nameList[index - 1].value;
    countyname = nameList[index - 1].label;
  }
}
// 地区选择级联控件
var cascader_region = ui.GeoCascader({
  // 可以通过init自定义显示内容
  init: {
    list: ["province", "city", "county"],
    province: ["河北省", "北京市", "天津市"],
  },
  placeholder: "请选择",
  onChange: inputArea,
});
var textboxName3 = ui.Label("行政区划:");
// 地区选择容器
var textboxPanel3 = ui.Panel({
  widgets: [textboxName3, cascader_region],
  style: { left: "10px", width: "400px" },
  layout: ui.Layout.flow("horizontal"),
});
// 确定显示级别 回调函数
var showLevelLabel = ui.Label("显示级别:");
function funRadio(value) {
  region_level = value;
}
// 计算区域 单选控件
var radio_region = ui.Radio({
  label: ["All", "Province", "City", "District"],
  value: "District",
  onChange: funRadio,
  disabled: false,
});
var show_level_Panel = ui.Panel({
  widgets: [showLevelLabel, radio_region],
  style: { left: "10px", width: "350px" },
  layout: ui.Layout.flow("horizontal"),
});
// TextBox
function seanson2Date(senson) {
  // 将季节转化为日期
  print("选择的季节是", senson);
  switch (senson) {
    case "spring":
      selectStartDate = selectYear + "-3-1";
      seasonindex = 0;
      break;
    case "summer":
      selectStartDate = selectYear + "-6-1";
      seasonindex = 1;
      break;
    case "fall":
      selectStartDate = selectYear + "-9-1";
      seasonindex = 2;
      break;
    case "winter":
      selectStartDate = selectYear + "-12-1";
      seasonindex = 3;
      break;
  }
  return selectStartDate;
}
//季节选择回调函数
function inputSDate(value) {
  selectSeason = value;
}
//季节选择列表控件
var selectSeason = ui.Select({
  items: ["spring", "summer", "fall", "winter"],
  placeholder: "请选择季节",
  value: selectSenson,
  onChange: inputSDate,
  disabled: false,
});
var textboxName1 = ui.Label("显示季节:");
var textboxPanel1 = ui.Panel({
  widgets: [textboxName1, selectSeason],
  style: { left: "10px", width: "300px" },
  layout: ui.Layout.flow("horizontal"),
});
//年份滑块
function yearSlide(value) {
  selectYear = value;
  print("选择年份为:", value);
}
//年份选择滑块
var yearSlider = ui.Slider({
  min: 2018,
  max: 2020,
  value: selectYear,
  step: 1,
  onChange: yearSlide,
  style: { bottom: "0px", width: "500px" },
});
var sliderLabel = ui.Label("年份:", { bottom: "-10px" });
var sliderPanel = ui.Panel({
  widgets: [sliderLabel, yearSlider],
  style: { width: "580px", height: "55px", bottom: "10px", left: "450px" },
  layout: ui.Layout.flow("horizontal"),
});
Map.addUI(sliderPanel);
// Button
function clickBtn() {
  print(
    "点击按钮,选择的参数是:",
    selectCode + ":" + selectTag + ":" + selectSenson
  );
  if (layerKey != null) {
    Map.removeLayer(layerKey);
    print("layerKey", layerKey);
  } //清空现有层
  roi = getROI(selectCode);
  var startdate = seanson2Date(selectSenson);
  cacluateVI(roi, startdate, selectTag);
}
function cancelclickBtn() {
  if (layerKey != null) {
    Map.removeLayer(layerKey);
  } //清空现有层
  if (roilayerKey != null) {
    Map.removeLayer(roilayerKey);
  }
  // DOM 操作:重启系统
  var restbtn = document.getElementsByClassName("toolButton")[3];
  restbtn.click();
  var runbtn = document.getElementsByClassName("toolButton")[2];
  runbtn.click();
}
var btn1 = ui.Button({
  label: "清空",
  style: { left: "40px" },
  onClick: cancelclickBtn,
});
var btn2 = ui.Button({
  label: "显示",
  type: "success",
  onClick: clickBtn,
  style: { left: "70px", top: "0px" },
});
var btnPanel = ui.Panel({
  widgets: [btn1, btn2],
  style: { left: "0px", top: "20px" },
  layout: ui.Layout.flow("horizontal"),
});
// 每个指标的逐季节平均值
var meanData = {
  FVC: [0.5, 0.68, 0.57, 0.39],
  LST: [0.71, 0.81, 0.64, 0.34],
  MNDWI: [0.27, 0.23, 0.25, 0.38],
  NDBI: [0.65, 0.43, 0.59, 0.65],
  AQI: [0.43, 0.4, 0.45],
  EI: [0.47, 0.55, 0.51, 0.49],
};
// seanson 转化为 索引
//统计部分
var staticIndes = ["MNDWI", "FVC", "NDBI"];
var staticLabel = ui.Label("统计指标:");
function staticIndex(value) {
  staticIndes = value;
  print("staticIndes", staticIndes);
}
var staticIndexcheckbox = ui.Checkbox({
  label: ["EI", "MNDWI", "FVC", "NDBI", "LST", "AQI"],
  value: staticIndes,
  style: { width: "220px" },
  onChange: staticIndex,
});
var staticIndexPanel = ui.Panel({
  widgets: [staticLabel, staticIndexcheckbox],
  style: { left: "10px" },
  layout: ui.Layout.flow("horizontal"),
});
var showsStyleLabel = ui.Label("图表类型:");
function showStyleFunRadio(value) {
  charttype = value;
  print("图表类型为:", charttype);
}
var showStyleradio = ui.Radio({
  label: ["bar", "column", "line"],
  value: "bar",
  onChange: showStyleFunRadio,
  disabled: false,
});
var showStyle_Panel = ui.Panel({
  widgets: [showsStyleLabel, showStyleradio],
  style: { left: "10px", width: "350px" },
  layout: ui.Layout.flow("horizontal"),
});
var timeSriesLabel = ui.Label("统计方式:");
function timeSriesFunRadio(value) {
  staticType = value;
  print("统计方式:", staticType);
}
var timeSriesradio = ui.Radio({
  label: ["Season", "TimeSeries"],
  value: "Season",
  onChange: timeSriesFunRadio,
  disabled: false,
});
var timeSries_Panel = ui.Panel({
  widgets: [timeSriesLabel, timeSriesradio],
  style: { left: "10px", width: "350px" },
  layout: ui.Layout.flow("horizontal"),
});
function btn_staticClearBtn() {
  var restbtn = document.getElementsByClassName("toolButton")[3];
  restbtn.click();
  var runbtn = document.getElementsByClassName("toolButton")[2];
  print(runbtn);
  runbtn.click();
}
var btn_static_clear = ui.Button({
  label: "清空",
  style: { left: "40px" },
  onClick: btn_staticClearBtn,
});
// 数据统计 按照季节进行柱状图统计:
// 调用绘制方法,输出图表显示在结果面板中
// 柱状图统计: 指定年份的季节性
function colum_static() {
  var col_data = [];
  for (var i = 0; i < staticIndes.length; i++) {
    col_data.push(
      staticData[String(selectCode)][String(selectYear)][staticIndes[i]]
    );
  }
  var chart_options = {};
  if (charttype == "bar") {
    chart_options = {
      title: countyname + " " + selectYear + "年" + "环境指标逐季节变化情况",
      legend: staticIndes,
      yAxis: ["spring", "summer", "fall", "winter"],
      xAxisName: "value",
      yAxisName: "季节",
      series: col_data,
      chartType: charttype,
    };
  } else if (charttype == "column" || charttype == "line") {
    chart_options = {
      title: countyname + " " + selectYear + "年" + "环境指标逐季节变化情况",
      legend: staticIndes,
      xAxis: ["spring", "summer", "fall", "winter"],
      xAxisName: "季节",
      yAxisName: "value",
      series: col_data,
      chartType: charttype,
    };
  }
  print(chart_options);
  var chart = ui.Chart.array(chart_options);
  chart.setStyle({
    width: "500px",
    height: "300px",
    top: "50px",
    right: "1px",
  });
  Map.addUI(chart);
}
// 时间序列统计
function time_static() {
  var years = ["2018", "2019", "2020"];
  var multiIndesData = [];
  for (var i = 0; i < staticIndes.length; i++) {
    var timeSeriesData = [];
    for (var j = 0; j < years.length; j++) {
      teamData = staticData[selectCode][years[j]][staticIndes[i]];
      timeSeriesData = timeSeriesData.concat(teamData);
    }
    multiIndesData.push(timeSeriesData);
  }
  var chart_options = {
    title: countyname + " " + "全时间序列" + "生态环境指标变化情况",
    legend: staticIndes,
    xAxis: [
      "2018春",
      "2018夏",
      "2018秋",
      "2018冬",
      "2019春",
      "2019夏",
      "2019秋",
      "2019冬",
      "2020春",
      "2020夏",
      "2020秋",
    ],
    xAxisName: "Time",
    yAxisName: "各个指标",
    series: multiIndesData,
    chartType: "line",
    smooth: true,
  };
  var chart = ui.Chart.array(chart_options);
  chart.setStyle({ width: "500px", top: "50px", right: "1px" });
  Map.addUI(chart);
}
// 根据EI 值对地区进行评级:
function classEI() {
  // 实际值减去平均值
  var subvalueEI =
    staticData[selectCode][selectYear]["EI"][seasonindex] -
    meanData["EI"][seasonindex];
  var sublist = [];
  if (parseFloat(subvalueEI) > 0.045) {
    // 大于一倍标准差
    environmetClass = 1;
  } else if (parseFloat(subvalueEI) > 0) {
    //大于均值
    environmetClass = 2;
  } else if (parseFloat(subvalueEI) > -0.045) {
    //小于均值
    environmetClass = 3;
  } else {
    environmetClass = 4;
  }
  //
  var subFVC =
    staticData[selectCode][selectYear]["FVC"][seasonindex] -
    meanData["FVC"][seasonindex];
  if (subFVC < -0.09) {
    sublist.push(["FVC", subFVC]);
  }
  var subLST =
    staticData[selectCode][selectYear]["LST"][seasonindex] -
    meanData["LST"][seasonindex];
  if (subLST > 0.08) {
    sublist.push(["LST", subLST]);
  }
  var subNDBI =
    staticData[selectCode][selectYear]["NDBI"][seasonindex] -
    meanData["NDBI"][seasonindex];
  if (subNDBI > 0.12) {
    sublist.push(["NDBI", subNDBI]);
  }
  var subMNDWI =
    staticData[selectCode][selectYear]["MNDWI"][seasonindex] -
    meanData["MNDWI"][seasonindex];
  if (subMNDWI < -0.1) {
    sublist.push(["MNDWI", subMNDWI]);
  }
  if (selectYear == "2020") {
    var subAQI =
      staticData[selectCode][selectYear]["AQI"][seasonindex] -
      meanData["AQI"][seasonindex];
    if (subAQI > 0.1) {
      sublist.push(["AQI", subAQI]);
    }
  }
  return sublist;
}
// 统计各个指标数据并给出建议
function suggestPart() {
  var index2char = {
    FVC: "植被密度, ",
    NDBI: "建筑物/裸地密度, ",
    MNDWI: "水体数量, ",
    LST: "地表温度, ",
    AQI: "空气质量, ",
  };
  var indesQuality = classEI();
  // var classENV = indesQuality[indesQuality.length-1]     // 环境等级
  var sign = "";
  var strindes = "";
  for (var k = 0; k < indesQuality.length; k++) {
    var index = indesQuality[k][0]; //  每种标识
    charindex = index2char[index];
    strindes += charindex;
    var indexsubvalue = indesQuality[k][1];
    if (indexsubvalue > 0) {
      sign = sign + index + "高于预警值,";
    } else {
      sign = sign + index + "低于预警值,";
    }
  }
  environmetClasstoChart = ["优", "良", "中(预警)", "差"];
  var signChart = "目前该地区:" + sign + "建议加强对" + strindes + "的管理";
  if (parseInt(indesQuality.length) < 1) {
    signChart = "目前该地区各生态环境指标正常";
  }
  var suggestTable = ui.Table({
    items: [
      {
        name: countyname,
        time: selectYear + " " + selectSenson,
        result: "生态宜居性为: " + environmetClasstoChart[environmetClass - 1],
        info: signChart,
      },
    ],
    columns: [
      {
        title: "地区",
        key: "name",
        width: "100px",
        align: "center",
      },
      {
        title: "时间",
        key: "time",
        width: "100px",
        align: "center",
      },
      {
        title: "评估结果",
        key: "result",
        width: "100px",
        align: "center",
      },
      {
        title: "建议",
        key: "info",
        width: "200px",
        align: "center",
      },
    ],
  });
  return suggestTable;
}
// 宜居性评估结果 表
function btn_staticclickBtn() {
  if (staticType == "Season") {
    colum_static();
  } else if (staticType == "TimeSeries") {
    time_static();
  }
  var suggestTable = suggestPart();
  var suggestPanel = ui.Panel({
    widgets: [suggestTable],
    style: {
      width: "500px",
      right: "5px",
      top: "380px",
      border: "4px double #0bcbfb",
    },
  });
  Map.addUI(suggestPanel);
}
// 统计按钮
var btn_static_success = ui.Button({
  label: "统计",
  type: "success",
  onClick: btn_staticclickBtn,
  style: { left: "70px", top: "0px" },
});
var btnPanel_s = ui.Panel({
  widgets: [btn_static_clear, btn_static_success],
  style: { left: "0px", top: "10px" },
  layout: ui.Layout.flow("horizontal"),
});
//统计部分控件容器
var staticPanel = ui.Panel({
  widgets: [staticIndexPanel, showStyle_Panel, timeSries_Panel, btnPanel_s],
  style: {
    left: "3px",
    width: "350px",
    height: "250px",
    top: "5px",
    border: "1px double #ababab",
  },
  layout: ui.Layout.flow("vertical"),
});
var mapPanel = ui.Panel({
  widgets: [
    selectPanel,
    textboxPanel3,
    show_level_Panel,
    textboxPanel1,
    btnPanel,
  ],
  style: {
    left: "3px",
    width: "350px",
    height: "300px",
    top: "10px",
    border: "1px double #ababab",
  },
  layout: ui.Layout.flow("vertical"),
});
// 整体的控件容器
var panel_control = ui.Panel({
  widgets: [label, mapPanel, staticPanel],
  style: {
    width: "370px",
    height: "350px",
    left: "40px",
    top: "50px",
    backgroundColor: "#fff",
    border: "3px solid #00afaf",
  },
});
Map.addUI(panel_control);

image.png


相关文章
|
18天前
|
JSON 数据格式
【Azure App Service】当App Service中使用系统标识无法获取Access Token时
【Azure App Service】当App Service中使用系统标识无法获取Access Token时
|
18天前
|
关系型数据库 MySQL Linux
【Azure 应用服务】在创建Web App Service的时候,选Linux系统后无法使用Mysql in App
【Azure 应用服务】在创建Web App Service的时候,选Linux系统后无法使用Mysql in App
【Azure 应用服务】在创建Web App Service的时候,选Linux系统后无法使用Mysql in App
|
19天前
|
Java Linux Windows
【Azure 应用服务】App Service / Function App 修改系统时区为中国时区的办法(Azure中所有服务的默认时间都为UTC时间,转换为北京时间需要+8小时)
【Azure 应用服务】App Service / Function App 修改系统时区为中国时区的办法(Azure中所有服务的默认时间都为UTC时间,转换为北京时间需要+8小时)
|
2月前
|
弹性计算 Linux 网络安全
使用阿里云服务器迁移中心SMC将其他云平台业务迁移至阿里云教程参考
现在越来越多的个人和企业用户选择将其他云平台或者服务商的业务迁移到阿里云,但是如何快速且安全完成迁移是很多用户比较关注的问题,我们可以选择使用阿里云提供的服务器迁移中心(Server Migration Center,简称SMC),这个产品是阿里云提供给您的迁移平台,专注于提供能力普惠、体验一致、效率至上的迁移服务,满足您在阿里云的迁移需求。本文为大家展示使用阿里云服务器迁移中心SMC将其他云平台业务迁移至阿里云的教程,以供参考。
使用阿里云服务器迁移中心SMC将其他云平台业务迁移至阿里云教程参考
|
1月前
|
网络协议 物联网 测试技术
App Inventor 2 MQTT拓展入门(保姆级教程)
本文演示的是App和一个测试客户端进行消息交互的案例,实际应用中,我们的测试客户端可以看着是任意的、支持MQTT协议的硬件,通过订阅及发布消息,联网硬件与我们的App进行双向数据通信,以实现万物互联的智能控制效果。
109 2
|
19天前
|
存储 安全 网络安全
【Azure 环境】使用Azure中的App Service部署Web应用,以Windows为主机系统是否可以启动防病毒,防恶意软件服务呢(Microsoft Antimalware)?
【Azure 环境】使用Azure中的App Service部署Web应用,以Windows为主机系统是否可以启动防病毒,防恶意软件服务呢(Microsoft Antimalware)?
|
2月前
|
Android开发 Kotlin
kotlin开发安卓app,如何让布局自适应系统传统导航和全面屏导航
使用`navigationBarsPadding()`修饰符实现界面自适应,自动处理底部导航栏的内边距,再加上`.padding(bottom = 10.dp)`设定内容与屏幕底部的距离,以完成全面的布局适配。示例代码采用Kotlin。
91 15
|
2月前
|
JavaScript Java 测试技术
基于springboot+vue.js+uniapp的个人健康管理系统app附带文章源码部署视频讲解等
基于springboot+vue.js+uniapp的个人健康管理系统app附带文章源码部署视频讲解等
18 0
|
11天前
|
Web App开发 Java 视频直播
FFmpeg开发笔记(四十九)助您在毕业设计中脱颖而出的几个流行APP
对于软件、计算机等专业的毕业生,毕业设计需实现实用软件或APP。新颖的设计应结合最新技术,如5G时代的音视频技术。示例包括: 1. **短视频分享APP**: 集成FFmpeg实现视频剪辑功能,如添加字幕、转场特效等。 2. **电商购物APP**: 具备直播带货功能,使用RTMP/SRT协议支持流畅直播体验。 3. **同城生活APP**: 引入WebRTC技术实现可信的视频通话功能。这些应用不仅实用,还能展示开发者紧跟技术潮流的能力。
32 4
FFmpeg开发笔记(四十九)助您在毕业设计中脱颖而出的几个流行APP
|
5天前
|
移动开发 小程序 JavaScript
uni-app开发微信小程序
本文详细介绍如何使用 uni-app 开发微信小程序,涵盖需求分析、架构思路及实施方案。主要功能包括用户登录、商品列表展示、商品详情、购物车及订单管理。技术栈采用 uni-app、uView UI 和 RESTful API。文章通过具体示例代码展示了从初始化项目、配置全局样式到实现各页面组件及 API 接口的全过程,并提供了完整的文件结构和配置文件示例。此外,还介绍了微信授权登录及后端接口模拟方法,确保项目的稳定性和安全性。通过本教程,读者可快速掌握使用 uni-app 开发微信小程序的方法。
20 3

热门文章

最新文章