Python生成器函数初级进阶

本文涉及的产品
公共DNS(含HTTPDNS解析),每月1000万次HTTP解析
全局流量管理 GTM,标准版 1个月
云解析 DNS,旗舰版 1个月
简介: Python生成器函数初级进阶

目录

🌉一、生成器函数初级进阶

🎇1、从生成器中取值的两种方法

✨(1)、方法一:next方法

✨(2)、方法二:send方法

🎇2、预激协程的装饰器

🎇3、Python3新加的yield from

🎇4、回顾

🌉二、生成器函数高级进阶

🎇1、生成器的表达式和各种推导式

✨(1)、列表推导式

✨(2)、生成器的表达式

✨(3)、字典推导式

✨(4)、集合推导式(自带结果去重功能)

🎇2、总结


🌉一、生成器函数初级进阶

🎇1、从生成器中取值的两种方法

✨(1)、方法一:next方法

def generator():
    print(123)
    yield 1
    print(456)
    yield 2

g1 = generator()    #生成器g1
g2 = generator()    #生成器g2
print('*',g1.__next__())        #从生成器g1中取第一个值
print('**',g1.__next__())       #从生成器g1中取第二个值
print('***',g2.__next__())      #从生成器g2中取第一个值      

输出结果:
123
* 1
456
** 2
123
*** 1

✨(2)、方法二:send方法

  • send 获取下一个值的效果和next基本一致

        只是在获取下一个值的时候给上一个yield的位置传递了一个数据

  • 使用send的注意事项:
  1.         第一次使用生成器时候是用next获取下一个值
  2.         最后一个yield不能接收外部的值

总结:

        send:不能用在第一个,取下一个值的时候给上一个位置传一个新的值

def generator():
    print(123)
    content = yield 1
    print('=======',content)
    print(456)
    yield 2
#send 获取下一个值的效果和next基本一致
#只是在获取下一个值的时候,给上一yield的位置传递一个数据
#使用send的注意事项
    # 第一次使用生成器的时候 是用next获取下一个值
    # 最后一个yield不能接受外部的值

g = generator()
print('*',g.__next__())
ret = g.send('hello')          #send的效果与next一样
print('***',ret)

输出结果:
123
* 1
======= hello
456
*** 2

🎇2、预激协程的装饰器

什么是预激协程的装饰器?

        简单来说就是个加了装饰器的生成器(装饰器介绍)

预激协程的装饰器的实例:

#实际上就是省略了avg_g = average()       avg_g.__next__()这两步

def init(func):                 #func = average
    '''
    装饰器函数
    :param func:
    :return:
    '''
    def inner(*args,**kwargs):
        g = func(*args,**kwargs)    #g = average()
        g.__next__()
        return g
    return inner
@init               #average = init(average) = inner
def average():
    sum = 0
    count = 0
    avg = 0
    while 1:
        #num = yield
        num = yield avg
        sum += num
        count += 1
        avg = sum/count

avg_g = average()       #===>inner
ret = avg_g.send(10)
print(ret)
# avg_g.__next__()
# avg1 = avg_g.send(10)
# avg2 = avg_g.send(20)
# print(avg1,avg2)

输出结果:
10.0

🎇3、Python3新加的yield from

yield from: 后接列表、生成器、协程。与asyncio.coroutine同时使用,定义协程函数。在python3.5以后改成了await。当yield from后面是IO耗时操作的时候,会切换至另一个yield from。

在这我们简单来说:yield可以在函数中代替for循环对返回的数据进行迭代

def generator():
    a = 'ab'
    b = '12'
    for i in a:
        yield i
    for i in b:
        yield i

g = generator()    从生成器中取返回值
for i in g:
    print(i)

输出结果:
a
b
1
2


def generator():
    a = 'cd'
    b = '34'
    yield from a  # ,b只能有一个变量
    yield from b


g = generator()    #从生成器中取返回值
for i in g:
    print(i)

输出结果:
c
d
3
4

🎇4、回顾

**回顾:\
        一、send:\
                1、send的作用范围和next一模一样(从一个yield作用到下一个yield)\
                2、第一次不能使用send\
                3、函数在的最后一个yield不能接收新的值\
        二、\
                预激生成器的装饰器的例子**\
    

🌉二、生成器函数高级进阶

🎇1、生成器的表达式和各种推导式

✨(1)、列表推导式

模板:

[每一个元素或者是和元素相关的操作 for 元素 in 可迭代数据类型]    遍历后挨个处理\
[满足条件的元素进行相关的操作 for 元素 in 可迭代数据类型 if 元素相关的条件]   筛选功能


egg_list = ['鸡蛋%s'%i for i in range(10)] #这是个列表推导式
print(egg_list)

'''相当于'''
egg_list = []
for i in range(10):
    egg_list.append('鸡蛋%s' %i)
print(egg_list)

print([i for i in range(10)])

输出结果:
['鸡蛋0', '鸡蛋1', '鸡蛋2', '鸡蛋3', '鸡蛋4', '鸡蛋5', '鸡蛋6', '鸡蛋7', '鸡蛋8', '鸡蛋9']
['鸡蛋0', '鸡蛋1', '鸡蛋2', '鸡蛋3', '鸡蛋4', '鸡蛋5', '鸡蛋6', '鸡蛋7', '鸡蛋8', '鸡蛋9']
[0, 1, 2, 3, 4, 5, 6, 7, 8, 9]

✨(2)、生成器的表达式

  1. 生成器表达式(generator expression)也叫生成器推导式或生成器解析式,用法与列表推导式非常相似,在形式上生成器推导式使用圆括号(parentheses)作为定界符,而不是列表推导式所使用的方括号(square brackets)。
  2. 与列表推导式最大的不同是,生成器推导式的结果是一个生成器对象。生成器对象类似于迭代器对象,具有惰性求值的特点,只在需要时生成新元素,比列表推导式具有更高的效率,空间占用非常少,尤其适合大数据处理的场合。
  3. 使用生成器对象的元素时,可以根据需要将其转化为列表或元组,也可以使用生成器对象的next()方法或者内置函数next()进行遍历,或者直接使用for循环来遍历其中的元素。但是不管用哪种方法访问其元素,只能从前往后正向访问每个元素,不能再次访问
  4. 已访问过的元素,也不支持使用下标访问其中的元素。当所有元素访问结束以后,如果需要重新访问其中的元素,必须重新创建该生成器对象,enumerate、filter、map、zip等其他迭代器对象也具有同样的特点。

  

g = (i for i in range(10))
print(g)       #返回了一个生成器
for i in g:
    print(i)

输出结果:
<generator object <genexpr> at 0x000002075E40FC10>
0
1
2
3
4
5
6
7
8
9

✨(3)、字典推导式

例一:将一个字典的key和value对调

dic = {'a' : 97,'b' : 98}
dic_exchange = {dic[k] :k for k in dic}
print(dic_exchange)

输出结果:
{97: 'a', 98: 'b'}

✨(4)、集合推导式(自带结果去重功能)

set = {x**2 for x in [1,-1,2,-2,3,4]}
print(set)

输出结果:
{16, 1, 4, 9}

🎇2、总结

**唯独没有元组推导式,要得到一个元组就可以直接将推出来的数据类型转换为元组就行\
总结:各种推导式:生成器 列表 字典 集合\
            1、遍历操作\
            2、筛选操作\
二、惰性运算\
        生成器与迭代器都是惰性运算:\
        但是生成器你可以看的见因为这是你写的而迭代器一般看不见        \
        1、同一生成器中的数据只能取一次取完就没了\
        2、惰性运算:不找它要值它就不返回\

列表解析\

sum([i for i in range(100000000)])  # 内存占用大,机器容易卡死**

**# 生成器表达式\
sum(i for i in range(100000000))  # 几乎不占内存\
1.把列表解析的[]换成()得到的就是生成器表达式**

2.列表解析与生成器表达式都是一种便利的编程方式,只不过生成器表达式更节省内存

3.Python不但使用迭代器协议,让for循环变得更加通用。大部分内置函数,也是使用迭代器协议访问对象的。

相关文章
|
2月前
|
搜索推荐 Python
利用Python内置函数实现的冒泡排序算法
在上述代码中,`bubble_sort` 函数接受一个列表 `arr` 作为输入。通过两层循环,外层循环控制排序的轮数,内层循环用于比较相邻的元素并进行交换。如果前一个元素大于后一个元素,就将它们交换位置。
141 67
|
4天前
|
JSON 监控 安全
深入理解 Python 的 eval() 函数与空全局字典 {}
`eval()` 函数在 Python 中能将字符串解析为代码并执行,但伴随安全风险,尤其在处理不受信任的输入时。传递空全局字典 {} 可限制其访问内置对象,但仍存隐患。建议通过限制函数和变量、使用沙箱环境、避免复杂表达式、验证输入等提高安全性。更推荐使用 `ast.literal_eval()`、自定义解析器或 JSON 解析等替代方案,以确保代码安全性和可靠性。
18 2
|
1月前
|
Python
Python中的函数是**一种命名的代码块,用于执行特定任务或计算
Python中的函数是**一种命名的代码块,用于执行特定任务或计算
50 18
|
23天前
|
数据可视化 DataX Python
Seaborn 教程-绘图函数
Seaborn 教程-绘图函数
47 8
|
1月前
|
Python
Python中的函数
Python中的函数
45 8
|
2月前
|
大数据 数据处理 开发者
Python中的迭代器和生成器:不仅仅是语法糖####
本文探讨了Python中迭代器和生成器的深层价值,它们不仅简化代码、提升性能,还促进了函数式编程风格。通过具体示例,揭示了这些工具在处理大数据、惰性求值及资源管理等方面的优势。 ####
|
2月前
|
监控 测试技术 数据库
Python中的装饰器:解锁函数增强的魔法####
本文深入探讨了Python语言中一个既强大又灵活的特性——装饰器(Decorator),它以一种优雅的方式实现了函数功能的扩展与增强。不同于传统的代码复用机制,装饰器通过高阶函数的形式,为开发者提供了在不修改原函数源代码的前提下,动态添加新功能的能力。我们将从装饰器的基本概念入手,逐步解析其工作原理,并通过一系列实例展示如何利用装饰器进行日志记录、性能测试、事务处理等常见任务,最终揭示装饰器在提升代码可读性、维护性和功能性方面的独特价值。 ####
|
2月前
|
Python
Python中的`range`函数与负增长
在Python中,`range`函数用于生成整数序列,支持正向和负向增长。本文详细介绍了如何使用`range`生成负增长的整数序列,并提供了多个实际应用示例,如反向遍历列表、生成倒计时和计算递减等差数列的和。通过这些示例,读者可以更好地掌握`range`函数的使用方法。
55 5
|
2月前
|
测试技术 数据安全/隐私保护 Python
探索Python中的装饰器:简化和增强你的函数
【10月更文挑战第24天】在Python编程的海洋中,装饰器是那把可以令你的代码更简洁、更强大的魔法棒。它们不仅能够扩展函数的功能,还能保持代码的整洁性。本文将带你深入了解装饰器的概念、实现方式以及如何通过它们来提升你的代码质量。让我们一起揭开装饰器的神秘面纱,学习如何用它们来打造更加优雅和高效的代码。
|
2月前
|
JavaScript 前端开发 算法
python中的列表生成式和生成器
欢迎来到瑞雨溪的博客,这里是一位热爱JavaScript和Vue的大一学生的天地。通过自学前端技术2年半,现正向全栈开发迈进。如果你从我的文章中受益,欢迎关注,我将持续更新高质量内容,你的支持是我前进的动力!🎉🎉🎉
32 0