集成学习案例:蒸汽量预测集
1.数据信息
数据分成训练数据(train.txt)和测试数据(test.txt),其中字段”V0”-“V37”,这38个字段是作为特征变量,”target”作为目标变量。我们需要利用训练数据训练出模型,预测测试数据的目标变量。
2.评价指标
最终的评价指标为均方误差MSE。
3 数据处理
(1)探索数据分布
对于连续分布的传感器的数据,使用 kdeplot(核密度估计图) 进行数据的初步分析,即EDA。核密度估计(kernel density estimation)是在概率论中用来估计未知的密度函数,属于非参数检验方法之一。通过核密度估计图可以比较直观的看出数据样本本身的分布特征。
(2)画出热力图(sns.heatmap),查看特征之间的相关性。然后进行进行降维操作(将相关性的绝对值小于阈值的特征进行删除)和归一化操作。
(3) 特征工程
绘图显示Box-Cox变换对数据分布影响,Box-Cox用于连续的响应变量不满足正态分布的情况。在进行Box-Cox变换之后,可以一定程度上**减小不可观测的误差和预测变量的相关性。**同时,使用对数变换target目标值提升特征数据的正太性 。
(4)模型构建以及集成学习
构建训练集和测试集。寻找离群值,并删除。
(5) 进行模型的预测以及结果的保存
4 具体代码
import warnings from sklearn.kernel_ridge import KernelRidge warnings.filterwarnings("ignore") import matplotlib.pyplot as plt import seaborn as sns import pandas as pd import numpy as np from scipy import stats from sklearn.model_selection import train_test_split from sklearn.model_selection import GridSearchCV, RepeatedKFold, cross_val_score, cross_val_predict, KFold from sklearn.metrics import make_scorer, mean_squared_error from sklearn.linear_model import LinearRegression, Lasso, Ridge, ElasticNet from sklearn.svm import LinearSVR, SVR from sklearn.neighbors import KNeighborsRegressor from sklearn.ensemble import RandomForestRegressor, GradientBoostingRegressor, AdaBoostRegressor from xgboost import XGBRegressor from sklearn.preprocessing import PolynomialFeatures, MinMaxScaler, StandardScaler # 加载数据 data_train = pd.read_csv('train.txt', sep='\t') data_test = pd.read_csv('test.txt', sep='\t') # 合并训练数据和测试数据 data_train["oringin"] = "train" data_test["oringin"] = "test" data_all = pd.concat([data_train, data_test], axis=0, ignore_index=True) # 显示前5条数据 # print(data_all.head()) # 使用 kdeplot(核密度估计图) 进行数据的初步分析 # for column in data_all.columns[0:-2]: # #核密度估计(kernel density estimation)是在概率论中用来估计未知的密度函数,属于非参数检验方法之一。通过核密度估计图可以比较直观的看出数据样本本身的分布特征。 # g = sns.kdeplot(data_all[column][(data_all["oringin"] == "train")], color="Red", shade = True) # g = sns.kdeplot(data_all[column][(data_all["oringin"] == "test")], ax =g, color="Blue", shade= True) # g.set_xlabel(column) # g.set_ylabel("Frequency") # g = g.legend(["train","test"]) # plt.show() # 通过观察发现特征"V5","V9","V11","V17","V22","V28"中训练集数据分布和测试集数据分布不均,所以删除这些特征数据 data_all.drop(["V5", "V9", "V11", "V17", "V22", "V28"], axis=1, inplace=True) # 查看特征之间的相关性 data_train1 = data_all[data_all["oringin"] == "train"].drop("oringin", axis=1) # plt.figure(figsize=(20, 16)) # 指定绘图对象宽度和高度 # colnm = data_train1.columns.tolist() # 列表头 # mcorr = data_train1[colnm].corr(method="spearman") # 相关系数矩阵,即给出了任意两个变量之间的相关系数 # mask = np.zeros_like(mcorr, dtype=np.bool) # 构造与mcorr同维数矩阵 为bool型 # mask[np.triu_indices_from(mask)] = True # 角分线右侧为True # cmap = sns.diverging_palette(220, 10, as_cmap=True) # 返回matplotlib colormap对象,调色板 # g = sns.heatmap(mcorr, mask=mask, cmap=cmap, square=True, annot=True, fmt='0.2f') # 热力图(看两两相似度) # plt.show() # 进行降维操作,即将相关性的绝对值小于阈值的特征进行删除 threshold = 0.1 corr_matrix = data_train1.corr().abs() drop_col = corr_matrix[corr_matrix["target"] < threshold].index # print(drop_col) Index(['V14', 'V21', 'V25', 'V26', 'V32', 'V33', 'V34'] data_all.drop(drop_col, axis=1, inplace=True) # 归一化 cols_numeric = list(data_all.columns) cols_numeric.remove("oringin") def scale_minmax(col): return (col - col.min()) / (col.max() - col.min()) scale_cols = [col for col in cols_numeric if col != 'target'] data_all[scale_cols] = data_all[scale_cols].apply(scale_minmax, axis=0) # print(data_all[scale_cols].describe()) # 特征工程 # 绘图显示Box-Cox变换对数据分布影响,Box-Cox用于连续的响应变量不满足正态分布的情况。在进行Box-Cox变换之后,可以一定程度上减小不可观测的误差和预测变量的相关性 fcols = 6 frows = len(cols_numeric) - 1 plt.figure(figsize=(4 * fcols, 4 * frows)) i = 0 ''' for var in cols_numeric: if var != 'target': dat = data_all[[var, 'target']].dropna() i += 1 plt.subplot(frows, fcols, i) sns.distplot(dat[var], fit=stats.norm) plt.title(var + ' Original') plt.xlabel('') i += 1 plt.subplot(frows, fcols, i) _ = stats.probplot(dat[var], plot=plt) plt.title('skew=' + '{:.4f}'.format(stats.skew(dat[var]))) plt.xlabel('') plt.ylabel('') i += 1 plt.subplot(frows, fcols, i) plt.plot(dat[var], dat['target'], '.', alpha=0.5) plt.title('corr=' + '{:.2f}'.format(np.corrcoef(dat[var], dat['target'])[0][1])) i += 1 plt.subplot(frows, fcols, i) trans_var, lambda_var = stats.boxcox(dat[var].dropna() + 1) trans_var = scale_minmax(trans_var) sns.distplot(trans_var, fit=stats.norm); plt.title(var + ' Tramsformed') plt.xlabel('') i += 1 plt.subplot(frows, fcols, i) _ = stats.probplot(trans_var, plot=plt) plt.title('skew=' + '{:.4f}'.format(stats.skew(trans_var))) plt.xlabel('') plt.ylabel('') i += 1 plt.subplot(frows, fcols, i) plt.plot(trans_var, dat['target'], '.', alpha=0.5) plt.title('corr=' + '{:.2f}'.format(np.corrcoef(trans_var, dat['target'])[0][1])) ''' # 进行Box-Cox变换 cols_transform = data_all.columns[0:-2] for col in cols_transform: # transform column data_all.loc[:, col], _ = stats.boxcox(data_all.loc[:, col] + 1) # print(data_all.target.describe()) plt.figure(figsize=(12, 4)) plt.subplot(1, 2, 1) sns.distplot(data_all.target.dropna(), fit=stats.norm) plt.subplot(1, 2, 2) _ = stats.probplot(data_all.target.dropna(), plot=plt) # plt.show() # 使用对数变换target目标值提升特征数据的正太性 sp = data_train.target data_train.target1 = np.power(1.5, sp) # 1.5^sp # print(data_train.target1.describe()) plt.figure(figsize=(12, 4)) plt.subplot(1, 2, 1) sns.distplot(data_train.target1.dropna(), fit=stats.norm) plt.subplot(1, 2, 2) _ = stats.probplot(data_train.target1.dropna(), plot=plt) # 模型构建以及集成学习 def get_training_data(): # extract training samples from sklearn.model_selection import train_test_split df_train = data_all[data_all['oringin'] == 'train'] df_train['label'] = data_train.target1 y = df_train.target X = df_train.drop(["oringin", "target", "label"], axis=1) X_train, X_valid, y_train, y_valid = train_test_split(X, y, test_size=0.3, random_state=100) return X_train, X_valid, y_train, y_valid # extract test data (without SalePrice) def get_test_data(): df_test = data_all[data_all["oringin"] == "test"].reset_index(drop=True) return df_test.drop(["oringin", "target"], axis=1) # remse和mes评价函数 from sklearn.metrics import make_scorer # metric for evaluation def rmse(y_true, y_pred): diff = y_pred - y_true sum_sq = sum(diff ** 2) n = len(y_pred) return np.sqrt(sum_sq / n) def mse(y_ture, y_pred): return mean_squared_error(y_ture, y_pred) # scorer to be used in sklearn model fitting rmse_scorer = make_scorer(rmse, greater_is_better=False) # 输入的score_func为记分函数时,该值为True(默认值);输入函数为损失函数时,该值为False mse_scorer = make_scorer(mse, greater_is_better=False) # 寻找离群值,并删除 def find_outliers(model, X, y, sigma=3): # predict y values using model model.fit(X, y) y_pred = pd.Series(model.predict(X), index=y.index) # calculate residuals between the model prediction and true y values resid = y - y_pred mean_resid = resid.mean() std_resid = resid.std() # calculate z statistic, define outliers to be where |z|>sigma z = (resid - mean_resid) / std_resid outliers = z[abs(z) > sigma].index # print and plot the results print('R2=', model.score(X, y)) print('rmse=', rmse(y, y_pred)) print("mse=", mean_squared_error(y, y_pred)) print('---------------------------------------') print('mean of residuals:', mean_resid) print('std of residuals:', std_resid) print('---------------------------------------') print(len(outliers), 'outliers:') print(outliers.tolist()) plt.figure(figsize=(15, 5)) ax_131 = plt.subplot(1, 3, 1) plt.plot(y, y_pred, '.') plt.plot(y.loc[outliers], y_pred.loc[outliers], 'ro') plt.legend(['Accepted', 'Outlier']) plt.xlabel('y') plt.ylabel('y_pred'); ax_132 = plt.subplot(1, 3, 2) plt.plot(y, y - y_pred, '.') plt.plot(y.loc[outliers], y.loc[outliers] - y_pred.loc[outliers], 'ro') plt.legend(['Accepted', 'Outlier']) plt.xlabel('y') plt.ylabel('y - y_pred'); ax_133 = plt.subplot(1, 3, 3) z.plot.hist(bins=50, ax=ax_133) z.loc[outliers].plot.hist(color='r', bins=50, ax=ax_133) plt.legend(['Accepted', 'Outlier']) plt.xlabel('z') return outliers # get training data X_train, X_valid, y_train, y_valid = get_training_data() test = get_test_data() # find and remove outliers using a Ridge model outliers = find_outliers(Ridge(), X_train, y_train) # X_outliers = X_train.loc[outliers] # y_outliers = y_train.loc[outliers] X_t = X_train.drop(outliers) y_t = y_train.drop(outliers) # 模型训练 def get_trainning_data_omitoutliers(): # 获取训练数据省略异常值 y = y_t.copy() X = X_t.copy() return X, y def train_model(model, param_grid=[], X=[], y=[], splits=5, repeats=5): # 获取数据 if len(y) == 0: X, y = get_trainning_data_omitoutliers() # 交叉验证 rkfold = RepeatedKFold(n_splits=splits, n_repeats=repeats) # 网格搜索最佳参数 if len(param_grid) > 0: gsearch = GridSearchCV(model, param_grid, cv=rkfold, scoring="neg_mean_squared_error", verbose=1, return_train_score=True) # 训练 gsearch.fit(X, y) # 最好的模型 model = gsearch.best_estimator_ best_idx = gsearch.best_index_ # 获取交叉验证评价指标 grid_results = pd.DataFrame(gsearch.cv_results_) cv_mean = abs(grid_results.loc[best_idx, 'mean_test_score']) cv_std = grid_results.loc[best_idx, 'std_test_score'] # 没有网格搜索 else: grid_results = [] cv_results = cross_val_score(model, X, y, scoring="neg_mean_squared_error", cv=rkfold) cv_mean = abs(np.mean(cv_results)) cv_std = np.std(cv_results) # 合并数据 cv_score = pd.Series({'mean': cv_mean, 'std': cv_std}) # 预测 y_pred = model.predict(X) # 模型性能的统计数据 print('----------------------') print(model) print('----------------------') print('score=', model.score(X, y)) print('rmse=', rmse(y, y_pred)) print('mse=', mse(y, y_pred)) print('cross_val: mean=', cv_mean, ', std=', cv_std) # 残差分析与可视化 y_pred = pd.Series(y_pred, index=y.index) resid = y - y_pred mean_resid = resid.mean() std_resid = resid.std() z = (resid - mean_resid) / std_resid n_outliers = sum(abs(z) > 3) outliers = z[abs(z) > 3].index return model, cv_score, grid_results # 定义训练变量存储数据 opt_models = dict() score_models = pd.DataFrame(columns=['mean', 'std']) splits = 5 repeats = 5 # model = 'KernelRidge' # 可替换 # opt_models[model] = KernelRidge() # 可替换 model = 'Ridge' opt_models[model] = Ridge() alph_range = np.arange(0.25, 6, 0.25) param_grid = {'alpha': alph_range} opt_models[model], cv_score, grid_results = train_model(opt_models[model], param_grid=param_grid, splits=splits, repeats=repeats) # print(opt_models[model], cv_score, grid_results) cv_score.name = model score_models = score_models.append(cv_score) plt.figure() plt.errorbar(alph_range, abs(grid_results['mean_test_score']), abs(grid_results['std_test_score']) / np.sqrt(splits * repeats)) plt.xlabel('alpha') plt.ylabel('score') # 预测函数 def model_predict(test_data, test_y=[]): i = 0 y_predict_total = np.zeros((test_data.shape[0],)) for model in opt_models.keys(): if model != "LinearSVR" and model != "KNeighbors": y_predict = opt_models[model].predict(test_data) y_predict_total += y_predict i += 1 if len(test_y) > 0: print("{}_mse:".format(model), mean_squared_error(y_predict, test_y)) y_predict_mean = np.round(y_predict_total / i, 6) if len(test_y) > 0: print("mean_mse:", mean_squared_error(y_predict_mean, test_y)) else: y_predict_mean = pd.Series(y_predict_mean) return y_predict_mean # 模型的预测以及结果的保存 y_ = model_predict(test) y_.to_csv('predict.txt', header=None, index=False)